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Figure 1: Comparisons of different object detection pipelines. (a) In dense detectors, HWk object candidates enumerate
on all image grids, e.g. RetinaNet [23]. (b) In dense-to-sparse detectors, they select a small set of N candidates from dense
HWk object candidates, and then extract image features within corresponding regions by pooling operation, e.g. Faster R-
CNN [30]. (c) Our proposed Sparse R-CNN, directly provides a small set of N learned object proposals. Here N � HWk.

Abstract

We present Sparse R-CNN, a purely sparse method for
object detection in images. Existing works on object de-
tection heavily rely on dense object candidates, such as
k anchor boxes pre-defined on all grids of image feature
map of size H × W . In our method, however, a fixed
sparse set of learned object proposals, total length of N ,
are provided to object recognition head to perform classifi-
cation and location. By eliminating HWk (up to hundreds
of thousands) hand-designed object candidates to N (e.g.
100) learnable proposals, Sparse R-CNN completely avoids
all efforts related to object candidates design and many-to-
one label assignment. More importantly, final predictions
are directly output without non-maximum suppression post-
procedure. Sparse R-CNN demonstrates accuracy, run-time
and training convergence performance on par with the well-
established detector baselines on the challenging COCO
dataset, e.g., achieving 44.5 AP in standard 3× train-
ing schedule and running at 22 fps using ResNet-50 FPN
model. We hope our work could inspire re-thinking the con-
vention of dense prior in object detectors. The code is avail-
able at: https://github.com/PeizeSun/SparseR-CNN .

* Equal contribution.
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Figure 2: Convergence curves of RetinaNet, Faster R-
CNN, DETR and Sparse R-CNN on COCO val2017 [24].
Sparse R-CNN achieves competitive performance in terms
of training efficiency and detection quality.

1. Introduction

Object detection aims at localizing a set of objects and
recognizing their categories in an image. Dense prior has
always been cornerstone to success in detectors. In classic
computer vision, the sliding-window paradigm, in which a
classifier is applied on a dense image grid, is leading de-
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tection method for decades [6, 9, 38]. Modern mainstream
one-stage detectors pre-define marks on a dense feature map
grid, such as anchors boxes [23, 29], shown in Figure 1a, or
reference points [35, 44], and predict the relative scaling
and offsets to bounding boxes of objects, as well as the cor-
responding categories. Although two-stage pipelines work
on a sparse set of proposal boxes, their proposal genera-
tion algorithms are still built on dense candidates [11, 30],
shown in Figure 1b.

These well-established methods are conceptually intu-
itive and offer robust performance [8, 24], together with
fast training and inference time [40]. Besides their great
success, it is important to note that dense-prior detectors
suffer some limitations: 1) Such pipelines usually pro-
duce redundant and near-duplicate results, thus making
non-maximum suppression (NMS) [1, 39] post-processing
a necessary component. 2) The many-to-one label assign-
ment problem [2, 42, 43] in training makes the network sen-
sitive to heuristic assign rules. 3) The final performance is
largely affected by sizes, aspect ratios and number of an-
chor boxes [23, 29], density of reference points [19, 35, 44]
and proposal generation algorithm [11, 30].

Despite the dense convention is widely recognized
among object detectors, a natural question to ask is: Is
it possible to design a sparse detector? Recently, DETR
proposes to reformulate object detection as a direct and
sparse set prediction problem [3], whose input is merely
100 learned object queries [37]. The final set of predic-
tions are output directly without any hand-designed post-
processing. In spite of its simple and fantastic framework,
DETR requires each object query to interact with global im-
age context. This dense property not only slows down its
training convergence [45], but also blocks it establishing a
thoroughly sparse pipeline for object detection.

We believe the sparse property should be in two aspects:
sparse boxes and sparse features. Sparse boxes mean that a
small number of starting boxes (e.g. 100) is enough to pre-
dict all objects in an image. While sparse features indicate
the feature of each box does not need to interactively inter-
act with all other features over the full image. From this
perspective, DETR is not a pure spare method since each
object query must interact with dense features over full im-
ages.

In this paper, we propose Sparse R-CNN, a purely sparse
method, without object positional candidates enumerating
on all(dense) image grids nor object queries interacting
with global(dense) image feature. As shown in Figure 1c,
object candidates are given with a fixed small set of learn-
able bounding boxes represented by 4-d coordinate. For ex-
ample of COCO dataset [24], 100 boxes and 400 parameters
are needed in total, rather than the predicted ones from hun-
dreds of thousands of candidates in Region Proposal Net-
work (RPN) [30]. These sparse candidates are used as pro-

posal boxes to extract the feature of Region of Interest (RoI)
by RoIPool [10] or RoIAlign [13].

The learnable proposal boxes are the statistics of poten-
tial object location in the image. Whereas, the 4-d coordi-
nate is merely a rough representation of object and lacks a
lot of informative details such as pose and shape. Here we
introduce another concept termed proposal feature, which is
a high-dimension (e.g., 256) latent vector. Compared with
rough bounding box, it is expected to encode the rich in-
stance characteristics. Specially, proposal feature generates
a series of customized parameters for its exclusive object
recognition head. We call this operation Dynamic Instance
Interactive Head, since it shares similarities with recent dy-
namic scheme [18, 34]. Compared to the shared 2-fc layers
in [30], our head is more flexible and holds a significant
lead in accuracy. We show in our experiment that the for-
mulation of head conditioned on unique proposal feature
instead of the fixed parameters is actually the key to Sparse
R-CNN’s success. Both proposal boxes and proposal fea-
tures are randomly initialized and optimized together with
other parameters in the whole network.

The most remarkable property in our Sparse R-CNN is
its sparse-in sparse-out paradigm in the whole time. The
initial input is a sparse set of proposal boxes and proposal
features, together with the one-to-one dynamic instance in-
teraction. Neither dense candidates [23, 30] nor interacting
with global(dense) feature [3] exists in the pipeline. This
pure sparsity makes Sparse R-CNN a brand new member in
R-CNN family.

Sparse R-CNN demonstrates its accuracy, run-time and
training convergence performance on par with the well-
established detectors [2, 30, 35] on the challenging COCO
dataset [24], e.g., achieving 44.5 AP in standard 3× train-
ing schedule and running at 22 fps using ResNet-50 FPN
model. To our best knowledge, the proposed Sparse R-CNN
is the first work that demonstrates a considerably sparse de-
sign is qualified yet. We hope our work could inspire re-
thinking the necessary of dense prior in object detection and
exploring next generation of object detector.

2. Related Work

Dense method. Sliding-window paradigm has been popu-
lar for many years in object detection. Limited by classi-
cal feature extraction techniques [6, 38], the performance
has plateaued for decades and the application scenarios are
limited. Development of deep convolution neural networks
(CNNs) [14, 17, 20] cultivates general object detection
achieving significant improvement in performance [8, 24].
One of mainstream pipelines is one-stage detector, which
directly predicts the category and location of anchor boxes
densely covering spatial positions, scales, and aspect ratios
in a single-shot way, such as OverFeat [32], YOLO [29],
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SSD [25] and RetinaNet [23]. Recently, anchor-free algo-
rithms [16, 21, 35, 44] are proposed to make this pipeline
much simpler by replacing hand-crafted anchor boxes with
reference points. All of above methods are built on dense
candidates and each candidate is directly classified and re-
gressed. These candidates are assigned to ground-truth ob-
ject boxes in training time based on a pre-defined princi-
ple, e.g., whether the anchor has a higher intersection-over-
union (IoU) threshold with its corresponding ground truth,
or whether the reference point falls in one of object boxes.
Moreover, NMS post-processing [1, 39] is needed to re-
move redundant predictions during inference time.

Dense-to-sparse method. Two-stage detector is another
mainstream pipeline and has dominated modern object de-
tection for years [2, 4, 10, 11, 13, 30]. This paradigm can be
viewed as an extension of dense detector. It firstly obtains a
sparse set of foreground proposal boxes from dense region
candidates, and then refines location of each proposal and
predicts its specific category. The region proposal algorithm
plays an important role in the first stage in these two-stage
methods, such as Selective Search [36] in R-CNN and Re-
gion Proposal Networks (RPN) [30] in Faster R-CNN. Sim-
ilar to dense pipeline, it also needs NMS post-processing
and hand-crafted label assignment. There are only a few of
foreground proposals from hundreds of thousands of can-
didates, thus these detectors can be concluded as dense-to-
sparse methods.

Recently, DETR [3] is proposed to directly output the
predictions without any hand-crafted components, achiev-
ing very competitive performance. DETR utilizes a sparse
set of object queries, to interact with global(dense) image
feature, in this view, it can be seen as another dense-to-
sparse formulation.

Sparse method. Sparse object detection has the poten-
tial to eliminate efforts to design dense candidates, but has
trailed the accuracy of above detectors. G-CNN [27] can
be viewed as a precursor to this group of algorithms. It
starts with a multi-scale regular grid over the image and it-
eratively updates the boxes to cover and classify objects.
This hand-designed regular prior is obviously sub-optimal
and fails to achieve top performance. Instead, our Sparse
R-CNN applies learnable proposals and achieves better per-
formance. Concurrently, Deformable-DETR [45] is intro-
duced to restrict each object query to attend to a small set
of key sampling points around the reference points, instead
of all points in feature map. We hope sparse methods could
serve as solid baseline and help ease future research in ob-
ject detection community.

3. Sparse R-CNN
The central idea of Sparse R-CNN framework is to re-

place hundreds of thousands of candidates from Region

Proposal Features: N*d

…

Proposal Boxes: N*4

…

k-th box

Dynamic Head k

k-th feature

Cls

Reg

Figure 3: An overview of Sparse R-CNN pipeline. The
input includes an image, a set of proposal boxes and pro-
posal features, where the latter two are learnable parame-
ters. The backbone extracts feature map, each proposal box
and proposal feature are input into its exclusive dynamic
head to generate object feature, and finally outputs classifi-
cation and location.

Proposal Network (RPN) with a small set of proposal boxes
(e.g., 100). In this section, we first briefly introduce the
overall architecture of the proposed method. Then we de-
scribe each components in details.

3.1. Pipeline

Sparse R-CNN is a simple, unified network composed
of a backbone network, a dynamic instance interactive head
and two task-specific prediction layers (Figure 3). There are
three inputs in total, an image, a set of proposal boxes and
proposal features. The latter two are learnable and can be
optimized together with other parameters in network.

3.2. Module

Backbone. Feature Pyramid Network (FPN) based on
ResNet architecture [14, 22] is adopted as the backbone net-
work to produce multi-scale feature maps from input image.
Following [22], we construct the pyramid with levels P2

through P5, where l indicates pyramid level and Pl has res-
olution 2l lower than the input. All pyramid levels have
C = 256 channels. Please refer to [22] for more details.
Actually, Spare R-CNN has the potential to benefit from
more complex designs to further improve its performance,
such as stacked encoder layers [3] and deformable convo-
lution network [5], on which a recent work Deformable-
DETR [45] is built. However, we align the setting with
Faster R-CNN [30] to show the simplicity and effectiveness
of our method.

Learnable proposal box. A fixed small set of learnable
proposal boxes (N×4) are used as region proposals, instead
of the predictions from Region Proposal Network (RPN).
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Figure 4: An overview of our dynamic instance interactive
module. The filters vary with different instances, i.e., the
k-th proposal feature generates dynamic parameters for the
corresponding k-th RoI.

These proposal boxes are represented by 4-d parameters
ranging from 0 to 1, denoting normalized center coordi-
nates, height and width. The parameters of proposals boxes
will be updated with the back-propagation algorithm during
training. Thanks to the learnable property, we find in our
experiment that the effect of initialization is minimal, thus
making the framework much more flexible.

Conceptually, these learned proposal boxes are the statis-
tics of potential object location in the training set and can be
seen as an initial guess of the regions that are most likely to
encompass the objects in the image, regardless of the input.
Whereas, the proposals from RPN are strongly correlated
to the current image and provide coarse object locations.
We rethink that the first-stage locating is luxurious in the
presence of later stages to refine the location of boxes. In-
stead, a reasonable statistic can already be qualified candi-
dates. In this view, Sparse R-CNN can be categorized as
the extension of object detector paradigm from thoroughly
dense [23, 25, 28, 35] to dense-to-sparse [2, 4, 11, 30] to
thoroughly sparse, shown in Figure 1.

Learnable proposal feature. Though the 4-d proposal box
is a brief and explicit expression to describe objects, it pro-
vides a coarse localization of objects and a lot of informa-
tive details are lost, such as object pose and shape. Here we
introduce another concept termed proposal feature (N ×d),
it is a high-dimension (e.g., 256) latent vector and is ex-
pected to encode the rich instance characteristics. The num-
ber of proposal features is same as boxes, and we will dis-
cuss how to use it next.

Dynamic instance interactive head. Given N proposal
boxes, Sparse R-CNN first utilizes the RoIAlign operation
to extract features for each box. Then each box feature will

be used to generate the final predictions using our prediction
head.

Figure 4 illustrates the prediction head, termed as Dy-
namic Instance Interactive Module, motivated by dynamic
algorithms [18, 34]. Each RoI feature is fed into its own
exclusive head for object location and classification, where
each head is conditioned on specific proposal feature. In
our design, proposal feature and proposal box are in one-
to-one correspondence. For N proposal boxs, N proposal
features are employed. Each RoI feature fi(S × S × C)
will interact with the corresponding proposal feature pi(C)
to filter out ineffective bins and outputs the final object fea-
ture (C). The final regression prediction is computed by a
3-layer perception with ReLU activation function and hid-
den dimension C, and classification prediction is by a linear
projection layer.

For light design, we carry out consecutive 1×1 convolu-
tion with ReLU activation function, to implement the inter-
action process. Each proposal feature pi will be convolved
with the RoI feature to get a more discriminate feature. For
more details, please refer to our code. We note that imple-
mentation detail of interactive head is not crucial as long as
parallel operation is supported for efficiency.

Our proposal feature can be seen as an implementation
of attention mechanism, for attending to which bins in a
RoI of size S × S. The proposal feature generates kernel
parameters of convolution, then RoI feature is processed by
the generated convolution to obtain the final feature. In this
way, those bins with most foreground information make ef-
fect on final object location and classification.

We also adopt the iteration structure to further improve
the performance. The newly generated object boxes and ob-
ject features will serve as the proposal boxes and proposal
features of the next stage in iterative process. Thanks to the
sparse property and light dynamic head, it introduces only a
marginal computation overhead. Self-attention module [37]
is embedded into dynamic head to reason about the rela-
tions between objects. We note that Relation Network [15]
also utilizes attention module. However, it demands geome-
try attributes and complex rank feature in addition to object
feature. Our module is much more simple and only takes
object feature as input.

Object query proposed in DETR [3] shares a similar de-
sign as proposal feature. However, object query is learned
positional encoding. Feature map is required to add spa-
tial positional encoding when interacting with object query,
otherwise leads to a significant drop. Our proposal feature
is irrelevant to position and we demonstrate that our frame-
work can work well without positional encoding. We pro-
vide further comparisons in the experimental section.

Set prediction loss. Sparse R-CNN applies set prediction
loss [3, 33, 41] on the fixed-size set of predictions of clas-
sification and box coordinates. Set-based loss produces an
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Method Feature Epochs AP AP50 AP75 APs APm APl FPS
RetinaNet-R50 [40] FPN 36 38.7 58.0 41.5 23.3 42.3 50.3 24
RetinaNet-R101 [40] FPN 36 40.4 60.2 43.2 24.0 44.3 52.2 18
Faster R-CNN-R50 [40] FPN 36 40.2 61.0 43.8 24.2 43.5 52.0 26
Faster R-CNN-R101 [40] FPN 36 42.0 62.5 45.9 25.2 45.6 54.6 20
Cascade R-CNN-R50 [40] FPN 36 44.3 62.2 48.0 26.6 47.7 57.7 19
DETR-R50 [3] Encoder 500 42.0 62.4 44.2 20.5 45.8 61.1 28
DETR-R101 [3] Encoder 500 43.5 63.8 46.4 21.9 48.0 61.8 20
DETR-DC5-R50 [3] Encoder 500 43.3 63.1 45.9 22.5 47.3 61.1 12
DETR-DC5-R101 [3] Encoder 500 44.9 64.7 47.7 23.7 49.5 62.3 10
Deformable DETR-R50 [45] DeformEncoder 50 43.8 62.6 47.7 26.4 47.1 58.0 19
Sparse R-CNN-R50 FPN 36 42.3 61.2 45.7 26.7 44.6 57.6 23
Sparse R-CNN-R101 FPN 36 43.5 62.1 47.2 26.1 46.3 59.7 19
Sparse R-CNN*-R50 FPN 36 44.5 63.4 48.2 26.9 47.2 59.5 22
Sparse R-CNN*-R101 FPN 36 45.6 64.6 49.5 28.3 48.3 61.6 18

Table 1: Comparisons with different object detectors on COCO 2017 val set. The top section shows results from Detec-
tron2 [40] or original papers [3, 45]. Here “∗” indicates that the model is with 300 learnable proposal boxes and random crop
training augmentation, similar to Deformable DETR [45]. Run time is evaluated on NVIDIA Tesla V100 GPU.

optimal bipartite matching between predictions and ground
truth objects. The matching cost is defined as follows:

L = λcls · Lcls + λL1 · LL1 + λgiou · Lgiou (1)

Here Lcls is focal loss [23] of predicted classifications and
ground truth category labels, LL1 and Lgiou are L1 loss and
generalized IoU loss [31] between normalized center coor-
dinates and height and width of predicted boxes and ground
truth box, respectively. λcls, λL1 and λgiou are coefficients
of each component. The training loss is the same as the
matching cost except that only performed on matched pairs.
The final loss is the sum of all pairs normalized by the num-
ber of objects inside the training batch.

R-CNN families [2, 43] have always been puzzled by
label assignment problem since many-to-one matching re-
mains. Here we provide new possibilities that directly by-
passing many-to-one matching and introducing one-to-one
matching with set-based loss. This is an attempt towards
exploring end-to-end object detection.

4. Experiments

Dataset. Our experiments are conducted on the challeng-
ing MS COCO benchmark [24] using the standard met-
rics for object detection. All models are trained on the
COCO train2017 split (∼118k images) and evaluated
with val2017 (5k images).

Training details. ResNet-50 [14] is used as the back-
bone network unless otherwise specified. The optimizer is
AdamW [26] with weight decay 0.0001. The mini-batch is

16 images and all models are trained with 8 GPUs. Default
training schedule is 36 epochs and the initial learning rate
is set to 2.5 × 10−5, divided by 10 at epoch 27 and 33, re-
spectively. The backbone is initialized with the pre-trained
weights on ImageNet [7] and other newly added layers are
initialized with Xavier [12]. Data augmentation includes
random horizontal, scale jitter of resizing the input images
such that the shortest side is at least 480 and at most 800
pixels while the longest at most 1333. Following [3, 45],
λcls = 2, λL1 = 5, λgiou = 2. The default number of pro-
posal boxes, proposal features and iteration is 100, 100 and
6, respectively.

Inference details. The inference process is quite simple
in Sparse R-CNN. Given an input image, Sparse R-CNN
directly predicts 100 bounding boxes associated with their
scores. The scores indicate the probability of boxes con-
taining an object. For evaluation, we directly use these 100
boxes without any post-processing.

4.1. Main Result

We provide two versions of Sparse R-CNN for fair com-
parison with different detectors. The first one adopts 100
learnable proposal boxes without random crop data aug-
mentation, and is used to make comparison with main-
stream object detectors, e.g. Faster R-CNN and Reti-
naNet [40]. The second one leverages 300 learnable pro-
posal boxes with random crop data augmentations, and is
used to make comparison with DETR-series models [3, 45].

As shown in Table 1, Sparse R-CNN outperforms well-
established mainstream detectors, such as RetinaNet and
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Sparse Iterative Dynamic AP AP50 AP75 APs APm APl

X 18.5 35.0 17.7 8.3 21.7 26.4
X X 32.2 (+13.7) 47.5 (+12.5) 34.4 (+16.7) 18.2 (+9.9) 35.2 (+13.5) 41.7 (+15.3)
X X X 42.3 (+10.1) 61.2 (+13.7) 45.7 (+11.3) 26.7 (+8.5) 44.6 (+9.4) 57.6 (+15.9)

Table 2: Ablation studies on each components in Sparse R-CNN. Starting from Faster R-CNN, we gradually add learnable
proposal boxes, iterative architecture, and dynamic head in Sparse R-CNN. All models are trained with set prediction loss.

Cascade Feature reuse AP AP50 AP75

18.5 35.0 17.7
X 20.5(+2.0) 29.3 20.7
X X 32.2(+11.7) 47.5 34.4

Table 3: The effect of feature reuse in iterative architec-
ture. Original cascading implementation makes no big dif-
ference. Concatenating object feature of previous stage to
object feature of current stage leads to a huge improvement.

Self-att. Ins. interact AP AP50 AP75

32.2 47.5 34.4
X 37.2(+5.0) 54.8 40.1
X X 42.3(+5.1) 61.2 45.7

Table 4: The effect of instance-interaction in dynamic head.
Without instance interaction, dynamic head degenerates to
self-attention. The gain comes from both self-attention and
instance-interaction.

Faster R-CNN, by a large margin. Surprisingly, Sparse R-
CNN based on ResNet-50 achieves 42.3 AP, which has al-
ready competed with Faster R-CNN on ResNet-101 in ac-
curacy.

We note that DETR and Deformable DETR usually em-
ploy stronger feature extracting method, such as stacked en-
coder layers and deformable convolution. The stronger im-
plementation of Sparse R-CNN is used to give a more fair
comparison with these detectors. Sparse R-CNN exhibits
higher accuracy even using the simple FPN as feature ex-
tracting method. Moreover, Sparse R-CNN gets much bet-
ter detection performance on small objects compared with
DETR(26.9 AP vs. 22.5 AP).

The training convergence speed of Sparse R-CNN is 10×
faster over DETR, as shown in Figure 2. Since proposed,
DETR has been suffering from slow convergence, which
motivates the proposal of Deformable DETR. Compared
with Deformable DETR, Sparse R-CNN exhibits better per-
formance in accuracy (44.5 AP vs. 43.8 AP) and shorter
running-time (22 FPS vs. 19 FPS), with shorter training
schedule (36 epochs vs. 50 epochs).

The inference time of Sparse R-CNN is on par with other
detectors. We notice that the model with 100 proposals is
running at 23 FPS, while 300 proposals only decreases to
22 FPS, thanks to the light design of the dynamic instance
interactive head.

4.2. Module Analysis

In this section, we analyze each component in Sparse R-
CNN. All models are based on ResNet50-FPN backbone,
100 proposals, 3x training schedule, unless otherwise noted.

Learnable proposal box. Starting with Faster R-CNN, we
naively replace RPN with a sparse set of learnable proposal
boxes. The performance drops from 40.2 AP (Table 1 line
3) to 18.5 (Table 2). We find that there is no noticeable
improvement even more fully-connected layers are stacked.

Iterative architecture. Iteratively updating the boxes is
an intuitive idea to improve its performance. However, we
find that a simple cascade architecture does not make a big
difference, as shown in Table 3. We analyze the reason is
that compared with the refined proposal boxes in [2] which
mainly locating around the objects, the candidates in our
case are much more coarse, making it hard to be optimized.
We observe that the target object for one proposal box is
usually consistent in the whole iterative process. Therefore,
the object feature in previous stage can be reused to play a
strong cue for the next stage. The object feature encodes
rich information such as object pose and location. This mi-
nor change of feature reuse results in a huge gain of 11.7
AP on basis of original cascade architecture. Finally, the it-
erative architecture brings 13.7 AP improvement, as shown
in second row of Table 2.

Dynamic head. The dynamic head uses object feature of
previous stage in a different way with iterative architec-
ture discussed above. Instead of simply concatenating, the
object feature of previous stage is first processed by self-
attention module, and then used as proposal feature to im-
plement instance interaction of current stage. The self-
attention module is applied to the set of object features
for reasoning about the relation between objects. Table 4
shows the benefit of self-attention and dynamic instance in-
teraction. Finally, Sparse R-CNN achieves accuracy perfor-
mance of 42.3 AP.
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Init. AP AP50 AP75 APs APm APl

Center 41.5 59.6 45.0 25.6 43.9 56.1
Image 42.3 61.2 45.7 26.7 44.6 57.6
Grid 41.0 59.4 44.2 23.8 43.7 55.6

Random 42.1 60.3 45.3 24.5 44.6 57.9

Table 5: Effect of initialization of proposal boxes. Detec-
tion performance is relatively robust to initialization of pro-
posal boxes.

Proposals AP AP50 AP75 FPS Training time

100 42.3 61.2 45.7 23 19h
300 43.9 62.3 47.4 22 24h
500 44.6 63.2 48.5 20 60h

Table 6: Effect of number of proposals. Increasing number
of proposals leads to continuous improvement, while more
proposals take more training time.

Stages AP AP50 AP75 FPS Training time

1 21.7 36.7 22.3 35 12h
2 36.2 52.8 38.8 33 13h
3 39.9 56.8 43.2 29 15h
6 42.3 61.2 45.7 23 19h

12 41.6 60.2 45.0 17 30h

Table 7: Effect of number of stages. Gradually increas-
ing the number of stages, the performance is saturated at 6
stages.

Initialization of proposal boxes. The dense detectors
always heavily depend on design of object candidates,
whereas, object candidates in Sparse R-CNN are learnable
and thus, all efforts related to designing hand-crafted an-
chors are avoided. However, one may concern that the ini-
tialization of proposal boxes plays a key role in Sparse R-
CNN. Here we study the effect of different methods for ini-
tializing proposal boxes:

• “Center” means all proposal boxes are located in the
center of image at beginning, height and width is set to
0.1 of image size.

• “Image” means all proposal boxes are initialized as the
whole image size.

• “Grid” means proposal boxes are initialized as regular
grid in image, which is exactly the initial boxes in G-
CNN [27].

• “Random” denotes the center, height and width of pro-
posal boxes are randomly initialized with Gaussian
distribution.

Method AP AP50 AP75

Multi-head Attention [37] 35.7 54.9 37.7
Dynamic head 42.3(+6.6) 61.2 45.7

Table 8: Dynamic head vs. Multi-head Attention. As object
recognition head, dynamic head outperforms multi-head at-
tention.

Method Pos. encoding AP AP50 AP75

DETR [3] X 40.6 61.6 -
DETR [3] 32.8 (-7.8) 55.2 -
Sparse R-CNN X 41.9 60.9 45.0
Sparse R-CNN 42.3(+0.4) 61.2 45.7

Table 9: Proposal feature vs. Object query. Object query is
learned positional encoding, while proposal feature is irrel-
evant to position.

From Table 5 we show that the final performance of Sparse
R-CNN is relatively robust to the initialization of proposal
boxes.

Number of proposals. The number of proposals largely
effects both dense and sparse detectors. Original Faster
R-CNN uses 300 proposals [30]. Later on it increases to
2000 [40] and obtains better performance. We also study
the effect of proposal numbers on Sparse R-CNN in Ta-
ble 6. Increasing proposal number from 100 to 500 leads
to continuous improvement, indicating that our framework
is easily to be used in various circumstances. Whereas, 500
proposals take much more training time, so we choose 100
and 300 as the main configurations.

Number of stages in iterative architecture. Iterative ar-
chitecture is a widely-used technique to improve object de-
tection performance [2, 3, 38], especially for Sparse R-
CNN. Table 7 shows the effect of stage numbers in iterative
architecture. Without iterative architecture, performance is
merely 21.7 AP. Considering the input proposals of first
stage is a guess of possible object positions, this result is not
surprising. Increasing to 2 stage brings in a gain of 14.5 AP,
up to competitive 36.2 AP. Gradually increasing the num-
ber of stages, the performance is saturated at 6 stages. We
choose 6 stages as the default configuration.

Dynamic head vs. Multi-head Attention. As discussed
in Section 3, dynamic head uses proposal feature to filter
RoI feature and finally outputs object feature. We find that
multi-head attention module [37] provides another possible
implementation for the instance interaction. We carry out
the comparison experiments in Table 8, and its performance
falls behind 6.6 AP. Compared with linear multi-head at-
tention, our dynamic head is much more flexible, whose pa-
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(a) Learned proposal boxes (b) Stage1 boxes (c) Stage3 boxes (d) Stage6 boxes

Figure 5: Visualization of predicted boxes of each stage in iterative architecture, including learned proposal boxes. Boxes
of classification score above 0.2 are shown. Learned proposal boxes are drawn in white color. The boxes from the same
proposal are drawn in the same color. The learned proposal boxes are randomly distributed on the image and together cover
the whole image. The iterative heads gradually refine box position and remove duplicate ones.

rameters are conditioned on its specific proposal feature and
more non-linear capacity can be easily introduced.

Proposal feature vs. Object query. Here we make a com-
parison of object query [3] proposed in DETR and our pro-
posal feature. As discussed in [3], object query is learned
positional encoding, guiding the decoder interacting with
the summation of image feature map and spatial positional
encoding. Using only image feature map will lead to a sig-
nificant drop. However, our proposal feature can be seen as
a feature filter, which is irrelevant to position. The compar-
isons are shown in Table 9, DETR drops 7.8 AP if the spatial
positional encoding is removed. On the contrary, positional
encoding gives no gain in Sparse R-CNN.

4.3. The Proposal Boxes Behavior

Figure 5 shows the learned proposal boxes of a con-
verged model. These boxes are randomly distributed on the
image to cover the whole image area. This guarantees the
recall performance on the condition of sparse candidates.
Further, each stage of cascading heads gradually refines box

position and remove duplicate ones. This results in high
precision performance. Figure 5 also shows that Sparse R-
CNN presents robust performance in both rare and crowd
scenarios. For object in rare scenario, its duplicate boxes
are removed within a few of stages. Crowd scenarios con-
sume more stages to refine but finally each object is detected
precisely and uniquely.

5. Conclusion

We present Sparse R-CNN, a purely sparse method for
object detection in images. A fixed sparse set of learned
object proposals are provided to perform classification and
location by dynamic heads. Final predictions are directly
output without non-maximum suppression post-procedure.
Sparse R-CNN demonstrates its accuracy, run-time and
training convergence performance on par with the well-
established detector. We hope our work could inspire re-
thinking the convention of dense prior and exploring next
generation of object detector.
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