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General Considerations

CHARACTERISTIC EQUATIONS FOR DEALY SYSTEMS
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Stability of Delay Systems
e Let y(t)=est be a proposed solution of

y(t) A aﬂj(t e Tl) 4 aoy(t (7L TO) —0

e Then we have (82 + are*Tig + aoe_STO) et

so that “s” must satisfy

Characteristic equation of the deIay@

» The location of its zeros determine the stability of the system.

e If any roots lie in the closed RHP, the system is unstable as the
solution grows without bound.
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e Consider a LTI system with Zdistinct delays,

= Aoz(t) —|—ZA£U T,) + Bu(t)

e The corresponding characteristic equation is

glealir et (Sl — Ao - Z 68TiAi> = Fy(s) + i Pi(s)e 1#?

et

and Py(s) = s" + Z a;s’, Pi(s) = ) (b)is’

o (Retarded Delay Systems)
§(t) +ary(t —T1) + aoy(t — Tp) = u(t)

e (Neutral Delay System)
4t —T3) + ary(t —T1) + apy(t — Tp) = u(?)




PID Controllers for Systems with Time-Delay

Roots of Characteristic Equations

e Retarded Systems: There can only be a finite number of RHP
roots. The stability of retarded systems is equivalent to the
absence of closed RHP roots.

e The fact that retarded systems have a finite number of RHP
roots means that one can count the number of roots crossing
into the RHP through the stability boundary and keep track of
the number of RHP roots as some parameter vary.

e Neutral Systems: Certain root chains can approach the imaginary
axis from the LHP and thus destroy stability.

o If delays are multiples of a common delay, we have
5(8) = CLO(S) - azl(S)@_TS -+ a2(8)6_2TS A ak(S)e_kTS
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THE PADE APPROXIMATION AND ITS LIMITATIONS

For example, the 3" order Pade approximation is given by

N3(sL) —L%s® +12L%s* —60Ls + 120

Ds(sL) L3s3 + 1212s? + 60Ls 4 120
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PID Stabilization of a Delay Systems Using a 1%t Order Pade
Approximation (An Example)

e 15t Order Pade approximation Fan R e
2+ Ls
= k 26 k (—Ls + 2)
Ra: A [Ts+1] e [(Ts+1)] ( (Ls + 2) )

e With the PID controller (k, ki ky), the closed-loop characteristic
polynomial becomes

8(s, kp, ki ka) = s(Ts~+1)(Ls+2) + (ki + kps + kqs®)(k)(—Ls + 2)
= (T's*+5)(Ls +2) + (kys® + kj)(—Ls + 2) + k,s(—Ls + 2)

where k!, = kkg, ki = kk;, k., = kk,.
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e Using the PID Design Algorithm, we have

——

(

4(1 + kk,)

|

4T+L—k@@]

fetkeli=s. 2fi)
. 2(1 + kk,)(2T + L — kk,L)
s kL(AT + L — kk,L)

kd<

\ k

(1+

and

1
<kp<E

iTE:
L

the set of |
P,
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201 k) 1) Question: Does the
1 1t order Pade
approximation
accurately capture
the actual set of

stabilizing PID
parameters for the
original time-delay
system?

_ (o, 2T-LtkkpL
P, (0 440_2& )

v

The stabilizing set of (k;,k,) values for a fixed kp.

11
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Example

1.6667
i S [1+2.90365] e

e Plant with the 1st order Pade approximation

1.6667  (—0.1238s + 1)

GmlS) = A7 2.9036s) (012385 + 1)

e Compute the entire stabilizing PID parameter values.

12
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! ! ! ! ! ! !
15 * T h >

| .. ........... ] o = BAABT
: T R = 60
i : | k‘d == 15

10 T T T T T T T

Time-response of the
closed-loop system

The stabilizing (kokg) valuesat LU
k,=8.4467 D A0 0 O It

BT 1 1 1 1 1 I 1 I
0 2 4 & 8 10 12 14 16 18 20

Showing unstable behavior!

13
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Tried with the 24, 319, and 5" order Pade approximation

DB R EEEREEEEEEEEE I RS R EEEE R R [ERREEEEEEEEE :

set for Gm 2(s) :
— — — setfor Gm*s), Gm® (5) | :

I I I I I 1 I J
0 10 20 30 40 50 60 70 80
ki

e While the 2" order Pade approximation fails to capture the
actual stabilizing set, the 3 and 5% order Pade
approximations apparently do a better job.

14



Example with large delay

PID Controllers for Systems with Time-Delay

e Plant G(s):{ - ]6—103

1+ s

e Approximate the time-delay term using the 1st, 2nd, 3rd 5th 7th
and 9t order Pade approximations

e ST e B —
e S N N S _
£ S S ST N P SUS
,_S 0 ..............................................................................................
] O Ay S P S
P P
: : : stabilizing controller set Ch
i e AR AR - — ——  stabilizing controller set C%
1 1 1 1 1 1
0 0.05 01 015 02 0.25 03

k

1st and 2nd order!approximations

stabilizing controller set ok
— — —  stabilizing controller set o8
------ stabilizing controller set C7

L L L L
0 0.05 01 015 02 025
k

3rd 5th 7t and 9th drder approximations
15
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Observations

e For small values of the time-delay, the approximate sets easily
converge to the possible true sets. However, the convergence
becomes more difficult as the value of the time-delay increases.

e The convergence of the approximate set to a possible true set
improves with increased order of the Pade approximation.

16
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Pontryagin’s results

THE HERMITE-BIEHLER THEOREM FOR QUASI-POLYNOMIALS

Let f(s,%) be a polynomial in two variables with real or complex
coefficients defined as follows:

FLS AT — Z Z anpstt

N
h=0 k=0
Definition

f(s,t) is said to have a principal term if there exists a nonzero
coefficient anr where both indices have maximal values. Without loss
of generality, we will denote the principal term as axns™t". This means
that for each other term a;,;.s"t" , for ay;, # 0, we have either

M>h N>k or M=h N>k, or M >h, N=k.

Example  f(s,t) =3s+ t* does not have a principal term but
the polynomial f(s,t) = s* + ¢ + 2s°t does.
17
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Theorem (Pontryagin)

If the polynomial f(s,%) does not have a principal term, then the

function F'(s) = f(s,e®) has an infinite number of zeros with arbitrarily
large positive real parts.

18
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Study of the zeros of functions of the form g(s,cos(s),sin(s))
e Let g(s,uv)be a polynomial with real coefficients:

(s, u,v) Zngbh U, V)

h=0 k=0
¢§Lk) (u,v) is a polynomial of degree k&, homogeneous in vand v.

e Assume that ¢§Lk) (u,v) is not divisible by u* + v°
k
ey

9
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e Consider G(s) = g(s,cos(s),sin(s))
e Let ®*W(5) = ¢*M(cos(s), sin(s))

THEOREM

Let g(s,u,v)be a polynomial with principal term given by S U, ).
If nis such that ™) (5 + jw) does not take the value zero for real w,
then starting from some sufficiently large value of [, the function G(s)
will have exactly 4N +M zeros in the strip

—2lm + n < Re[s] < 2lm + .

M (N)(
M

Thus for the function G(s)to have only real roots, it is necessary and
sufficient that in the interval

—2lm +n < Re|s| < 2lm + 7,
it has exactly 4~ + A real roots starting with some sufficiently large |.

20
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e Consider
VL RETN M-1 N
S o) = Z Z apps™tt = sM XN () 4 Z anps™t”
h=0 k=0 h=0 k=0
N
X*(N) (t) = Z CLMkt
k=0
Definition
Let F(s) = f(s,e®). where f{s,t)is a polynomial with a principal term,
and F(jw) = F.(w) + jFy(w)

Let w,;, w,, W, ... denote the real roots of F(w), and let w;;, w,, wW;
... denote the real roots of F{w), both arranged in ascending order of
magnitude. The we say that the roots of F(w)and F{(w) interlace if
they satisfy the following property:

Wrl < Wij1 < Wr2 < Wi < -

21
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THEOREM (HB Theorem to quasi-polynomial)

If all the roots of F(s)lie in the open LHP, then the roots of F(w)
and F(w) are real, simple, interlacing, and

/ /

F (w)F.(w) — Fj(w)F,.(w) >0 (%)

{ r

for each we(-00,0), where F,(w)and F;(w) denote the first
derivative with respect to w of F(w)and F(w), respectively.
Moreover, in order that all the roots of £(s)lie in the open LHP, it is
sufficient that one of the following conditions be satisfied:

1. All the roots of F(w)and F(w) are real, simple, and interlacing
and the inequality (*) is satisfied for at least one value of w;

2. All the roots of F(w) are real and for each root , (*) is satisfied,
I.e., Fi(w,)F.(w,) < 0;

3. All the roots of F(w) are real and for each root, (*) is satisfied,
i.e., F,(w)F.(w)>0.

22
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THEOREM

If the function x*®™)(e*) has roots in the open RHP, then the
function £(s)has an unbounded set of zeros in the open RHP.
If all the zeros of the function X*™(¢*) lie in the open LHP,
then the function F(s) can only have a bounded set of zeros in
the open RHP.

23
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Application to Control Theory

Classes of Quasi-polynomials:

Retarded-type (or delay-type) Quasi-polynomials: This class
consists of quasi-polynomials whose asymptotic chains go deep into
the open LHP.

Neutral-type quasi-polynomials: This class consists of quasi-
polynomials that along with delay-type chains contain at least one
asymptotic chain of roots in a vertical strip of the complex plane.

Forestall-type quasi-polynomials: This class consists of quasi-

polynomials with at least one asymptotic chain that goes deep into
the open RHP.

24
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Definition
A delay-type quasi-polynomial is said to be stable iff all its roots
have negative real parts.

Definition

A neutral-type quasi-polynomial is said to be stable if there
exists a positive number ¢ such that the real parts of all its roots
are less than —o.

25
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THEOREM
Let 6*(s) = e*Lmd(s) 4+ esEm~In, (s) + sEm=L2dp,(s) 4+ ... £ (s)
and write §*(jw) = 9, (w) + jd;(w).Under the following conditions

(A1)  degld(s)] = q and deg[n;(s)] < g fori =1,2,...,m;
(AQ) O 2uliy 0 ls o o 5

0*(s) is stable iff
1. J.(w) and J;(w) have only simple, real roots and these interlace,

2. 6.(wo)6r(wo) — 8:(wo)d..(w,) > 0, for some w, € (—o0, 00).

26
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Example

e With k,=1.8, ki=0.2, we have §(s) = 25* +2.85+0.2 and itis
stable.

e Consider G(s)= [ 251+ 1] ga

e With k,=1.8 and k;=0.2, the characteristic equation of the
closed-loop system is:

6(s) =25+ s+ (1.85+0.2)e ' =0

e For analyzing the stability, consider

O E) = V(e =102 sle T H-RE 02
27
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e The real and imaginary parts are given by
6r(w) = 0.2 —wsin(10w) — 2w?* cos(10w)
0i(w) = w[l.8+ cos(10w) — 2w sin(10w)] .

— real part ' : )
— — imaginary part : : !

1 1 | 1 1 1 1 1
10 20 30 40 &0 70 gl a0 100

. 50
w (rad/sec) Time (sec)

Shows interlacing. Shows instability

28
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Analysis

1. The example illustrates the case of a time-delay system that
satisfies the interlacing and monotonic phase increase properties
but fails to be stable.

2. The reason for this behavior lies in the nature of the roots of real
and imaginary parts of the polynomial: they are not all real.

THEOREM (Pontyagin)

Let Mand N denote the highest powers of sand &5, respectively, in
0’ (s). Let n be an appropriate constant such that the coefficients of
terms of highest degree in 0(w)and J{w) do not vanish at w=n.
Then for the equations o(w)=0or o(w)=0to have only real roots,
it is necessary and sufficient that in each of the intervals

2+ < w20 +n e Al S e DS,
o{w)or o(w) have exactly 4;v + ar real roots for a sufficiently large /.

29
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Llet s =10s

0*(8) = (0.028% 4 0.15)e® + 0.185 4 0.2
The real and imaginary parts of the new quasi-polynomial is

0(@) = 0.2 —0.10sin(@) — 0.0202 cos()
(W) = w[0.18 + 0.1 cos(w) — 0.02w sin(w)] .

S

The roots of 4;(w) =0
Do =0; & =8.0812; & =8.8519; i=13.5896; &y = 15.4332;
&5 = 19.5618; &g = 21.8025;

T
Choose n=

4

30
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i=I i=2

1. 9;(@) has only one real root in [0,
2n-r/4]; the root at the origin.

2. Since 0;(&) is an odd function, in
] the interval [-7n/4, 7n/4] , 6;(©)
b will have only one real root.

L A
O3 Dy

T e T T T ]

3. 0;(@) has no real roots in the
SRR interval [7n/4, 9n/4]; §, o)

. has only one real root in E-2n+n/4,
2n+n/4] which does not sum up to

AN + M = 6 for [y = 1.

6r-m/4d

dr—w/d4

I I
I I
I I
I I
| |
I I
I I
I I
I I
I I
I I
I I
I I
2 [ I,
i ™
I I
I I
I I
I I
I I
I I
I I
: :47:+:rcf’4
I I
I I
I I
I I

2m-m/d 2n+mid

| |
5 10 15 20 25
Frequency (rad/sec)

. Let I, =2 so the requirement on the number if real roots is 84 M=10. 0;(&)
has only five real roots in [-4n+1/4, 4n+1/4].

. Following the same procedure for [ =3,4,... we see that the number of real
roots of ¢;(w) in [-2 lt+x/4, 2 w#n/4] is always less than LN — A=

. We conclude that the roots of é;(&) are not all real.

31
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STABILITY OF SYSTEMS WITH A SINGLE DELAY

e Consider the characteristic equation
6(s,L) = d(s) + n(s)e™™ =0

* Problem: Determine the ranges of values of L for which all the
roots of the characteristic equation lie in the LHP.

e A systematic procedure to analyze the behavior of the roots of
the characteristic polynomial as L increases from 0 to co.

32
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Walton and Marshall’s Procedure

Step 1:

Step 2:

Examine the stability at £=0.

Examine the behavior of the roots as increasing L from 0 to
an infinitesimally small and positive.

The number of roots changes from being finite to infinite.
For an infinitesimally small £, the new roots must come in at
infinity. Otherwise, e =1 and no new roots.

Determine where in complex plane these new roots arise.

If deg[n(s)]<deg[d(s)], the roots “'s” is large iff e is large
(i.e., Re[s]<0) New roots occur in the open LHP

If deg[n(s)]=deg[d(s)], the location of the roots is
determined by the sign of M «?) for large w.

33
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Step 3: ¢ Examine potential crossing points on the imaginary axis
(we separately consider the case s=0)

e Consider
d(jw)+n(jw)e—JLw ) w)d(—1w) —n(jwn(—1w) =
{d<—jw>+n<—jw>eﬂw g A(jw)d(—jw) — n(jw)n(—jw) = 0

« If no positive roots of M{«?)=0, then no values of L for
which 6(jw, L) =0
Remark
If deg[n(s)]<deg[d(s)] and M a?) has no positive real roots, then there

is no change in stability:
The system will be stable for all L>0 if the system is stable at £=0.

The system will be unstable for all L=0 if the system is unstable at £=0.
34
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Case when s=0

In this case, we have only one equation
d(0) +n(0) =0 = d(0)+e n(0) =0, for all finite L

To find L,
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ds ds ds
Re[dL]>O Re[dL] <0 Re[dL]—O
Necessary to consider
destabilizing stabilizing high-order derivatives

After some manipulations, we have

~ destabilizing

T

36
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Example
St s = deae
1. Examine 0(s,0)=s+2, so the system is stable for L=0.
2. Since deg[d(s)]=1>deg[n(s)]=0, we skip step 2.
3. From d(s)=s, n(s)=2, we have W(w?)= a?-4.
e W(w?)=1>0.
« Since S=sgn[W'(w?)]=1, the root is destabilizing.
 The corresponding values of L are
f "
< e TR T o iy ateD
sin(Lw) = Im —% =} 4

\

37
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Conclusion
The region of stability is 0 < L< /4

38
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FIRST ORDER SYSTEMS WITH TIME-DELAY

k
Plant: G(s) = [1 = Ts] e

PID Controller:  C(s) =k, + ki + kgs
S

Stability Conditions for Delay free Systems

Characteristic Polynomial without time-delay:
6(s) = (T + kkg)s® + (1 + kk,)s + kk;

Assuming k>0, we have
T

1 T 1
{kp>_E7 k2>07 kd>_E} or {kp<—E, kZ<O, kd<—E}

39
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Characteristic Polynomial
6(s) = (kk; + kkys + kkgs®)e ™ + (1 + T's)s

Write
e°0(s) = kk; + kk,s + kkgs® + (1 4+ T's)se™ =: 6*(s)

Substituting s=jw,
0" (jw) = or(w) + joi(w)
where
or(w) = kk; — kkqw® — wsin(Lw) — Tw? cos(Lw)
w |kk, + cos(Lw) — Tw sin(Lw)]

322
M
&
>
|

open-loop stable
open-loop unstable

40
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Open-loop Stable Plant

Plant: (s )= L +kTs] e Ls T>0 (for stable plants)

0" (jw) = 0, (w) + j0i(w)
or(w) = kk; — kkgw?® — wsin(Lw) — Tw? cos(Lw)
di(w) = wlkky,+ cos(Lw) — Twsin(Lw)]

« k, only affects §,(w).
« kiand k4 affect §.(w).

e Parameters appear affinely in 6 .(w) and §,(w).

41
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Lemma

The imaginary part of 6§*(jw) has only simple real roots iff

1 Fe e
il & B T | sin(ay ) — cos(ay)
where q, is the solution of the equation
T
t =g
an (o) T

in the interval (0, m).

This lemma gives the ranges of k..

42
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Let z=wl+0, then

k
0.(2) = ﬁZQ |—kg + m(2)k; + b(2)]
where
L? L [ 8
it e 5 b(z) = S sin(z) + T cos(z)
Lemma
For each value of kp in the necessary and sufficient

conditions on k; and k, for the roots of 6.(z) and §,(z) to interface is
the following infinite set of inequalities:

ki 0, kg > mik; + bl, kg < mok; + bg, kg > mak; + bg,
kg < muk; + b4,
where the parameters m; and b, for j=1,2,3,... are given by

mj = m(zj), bj = b(Zj)
43
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Theorem

The range of k;, values for which a given open-loop stable plant, with
transfer function considered, can be stabilized using a PID controller
iS given by

1 1|7
T ko i e sin(ay ) — cos(ay)
where q is the solution of the equation
tan(a) = — =
aher)=—=at-1E g
=B

in the interval (0,m). For k, values outside this range, there are no
stabilizing PID controllers. The complete stabilizing region is given by:

44
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(a)
S e For each k,e(-1/k,1/k),
I 5 e oo ‘
L Tie by = kit b B | the cross-section of the
N stabilizing region in the
05 05 1 1.5 b 2 25 3 35 4 :
T T T T ( ) T T T T (kl kd) Space 1S the
ﬁj I e &= trapezoid T;
T T o
o Lo Tl brekg=mkit by ] AL s o e
o S cross-section of the
o | . Linekym moki b R B | stabilizing reaion in
bz ; g B ra | ] h: ::;
WO L I e the (k. k,) spbace is
Q Li}zekd: mlk.+ E}l Sl 0 N ‘\I\EI'I\GI’ UHU\J\! | R4
e B bl ____________________________________________ R RS _ i_ha i'i"iznﬂip’-‘- ;A§=
05 05 1 15, 2 25 3 35 4 el :
L? f
mj — ?,
: . it For each k,e(1/kk,), the cross-
st [Sin(zj )+ 7% cos(zj)] section of the stabilizing region in the
= . T (k,k;) space is the quadrilateral Q.
j .
w;, = —— |sin(z;) + —=z;(cos(z;)+ 1
) = 2 [sinte) + Tolcosts) + 1)

T

where z; are the real, positive solutions of £k, + cos(z) — —zsin(z) = 045

L
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Algorithm for Determining Stabilizing PID Parameters

1.

Initialize k,=-1/k and step=(k,+1/k)/(N+1) where N is the desir
ed number of points and

| MR G
ket == el sin(ay ) — cos(ay)

Set K,=k,+step;
If k,<k,, then go to 4. Else terminate the algorithm.

Find the roots z;, and z, of

/8
kk, 4+ cos(z) — T2 sin(z) = 0.

Compute the parameters m; and b;, j=1,2 associated with the z;.
Determine the stabilizing region in the (ki k4) space.

Go to 2.
46
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Example (Location of Z-N solution in the set)
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Example (Set using Pade Approximation vs. Set using
a True Delay System)

0.2

0.1 : : : - L |
i
0
4
0. 1 | | ‘

w
[
0.2

-0.3 A = .................. .................. ................. -

0.4 pE T A— S 1

. . with Pade approximation
-05 N S [P TRR B exactdelay A

- i i i i
o8 0 50 100 150 200 250

3D stabilizing set

Set from the true delay system

Set from the 1%t order Pade approximation
(It contains destabilizing parameters) 48
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Open-loop Unstable Plant

Plant: Gs) = [1 +kTs] e LS T<0 (for unstable plants)

Lemma

For |[T/L|>0.5, &,(jw) has only simple real roots iff

% [%Ozl sin(ay) — cos(oq)] ok —%
where «, is the solution of the equation
tan(a) = —La
TRCE

in the interval (0,m). In the special case of |T/L|=1, we have a,=m/2.
For |T/L|<0.5, the roots of 6.(jw) are not all real.

49
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Let z=wL[+0,
k
I 7 O 1
where  m(z) = = b(z) = 5 sin(z) + TZ cos(2)
Lemma
For each value of k; in the necessary and sufficient

conditions on k; and k; for the roots of 6.(z) and 6,(z) to interlace are
the following infinite set of inequalities:

k; < 0, kg < mqk; —|—b1, k—d > mok; + bg, kg < msk; + bg,
kd>m4ki+b4,---
where the parameters m; and b; for j=1,2,3,... are given by

m; = m(z;), b; = b(z,)

50
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Theorem

A necessary and sufficient condition for the existence of a stabilizing
PID controller for the open-loop unstable plant considered is
|T/L|>0.5. If this condition is satisfied, then the range of k;, values
for which a given open-loop unstable plant, with transfer function
considered, can be stabilized using a PID controller is given by

gt/ 1
o sin(ay) —cos(aq)| < k, < e
where a, is the solution of the equation
tan(0) = — 7
ant) = ————«
ekl

in the interval (0,m). In the special case of |T/L|=1, we have
a,=/2. For k, values outside this range, there are no stabilizing PID
controllers. Moreover, the complete stabilizing region is given:

o1
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For each k,e(k,-1/k), the
cross-section of the
stabilizing region in the
(k,k,) space is
quadrilateral Q.

The stabilizing region of (k;ky) for k <k <-1/k where
Jeel
k.= — | =y sin(ay) — cos(aq)

k| L

32
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Example

Consider a process defined by
dy(t) e e —0.85
S 0.25y(t) — 0.25u(t — 0.8) G(s) =72 P

o
!

The stabilizing region of
(ky ki kq) values for the
PID controllers.
(-8.6876<k,<-1)

P

1 1 1 1 1 1 1 1
£fo W O ~ O W B W M =
'l L I3 i Il i 1] i Il i

1
1 —
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ARBITRARY LTI SYSTEMS WITH A SINGLE
TIME-DELAY

Tsypkin proposed a method to extend the Nyquist criterion to deal
with time-delay systems (1946). This may lead to misleading
conclusions unless care is taken.

2s + 1
Example G(s) = i

 The closed-loop system is stable with unity negative feedback.

e According to Tsypkin, the closed-loop system should tolerate
a time-delay upto 3.7851.

« However, when we add a 1 second delay to the nominal
transfer function, the closed-loop system becomes unstable.
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____________________________________________________________________________________________

-1 -0.5 Q Q.5 1 1.5 2 2.5

e The Nyquist plot intersects the

unit circle at w,=1.

e The closed-loop system should

tolerate a time-delay upto
7+ arg G(jwo)
Wo

G000

-B000
0

Time offset: 0

The closed-loop system is
unstable with a 1 second delay.

25
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Pontryagin’s Theory vs. the Nyquist Criterion
Let h(zt) be a polynomial in the two variable z and t with constant

coefficients,
heZatie= Z Thetlr ek

m,n

The term a,z't° is called of the polynomial if a,#0
and r and s each attain their maximum.

Write
RS () 2 R T T e L R P e L

where x\7(t), j=0,1,2,....r are polynomials in twith degree at
most equal to s.
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Two Theorems of Pontryagin to Clarify Nyquist Criterion
Based Conditions for Systems with Time-delay

Theorem
If the polynomial h(z,t) = Zamnzmt” has no principal term, then the
function m,n

H(z) = h(z,€*)
has an unbounded number of zeros with arbitrary large positive real part.

Theorem

Let H(z)=h(ze?) where h(zt) is a polynomial with principal term a, z"t’.

If the function x,.©®) (&) has roots in the open RHP, then the function H(z)
has an unbounded set of zeros in the open RHP. If all the zeros of the
function x,®)(&?) lie in the open LHP, then the function A(z) has no
more than a bounded set of zeros in the open RHP.

ST
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Conditions which should be satisfied when using the
Nyquist criterion with the conventional Nyquist contour

Theorem
Suppose that we are given a unity feedback system with an open-loop
transfer function

G(s) = Go(s)e™™ = [ZZ\;EE;] o—Ls

where N(s) and D(s) are real polynomials of degree m and n,
respectively and L is a fixed delay. Then we have the following
conclusions:

1. If n<m, or, n=m and |b,/a,|=1 where an, bn are the leading
coefficients of D(s) and N(s), respectively, the Nyquist criterion is not
applicable and the system is unstable according to Pontryagin’s
theorems.

2. If n>m, or, n=m and |b,/a,|<1, the Nyquist criterion is applicable
and we can use it to check the stability of the closed-loop systemsg
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It is appropriate to point out that most likely Typkin assumed the
plant to be strictly proper, though he did not state it explicitly in
the literature. Attaching a PID controller to a proper or strictly
proper plant opens up the very real possibility of ending up with
an improper or a proper open-loop transfer function. This is the
reason that the above investigation had to be undertaken.

29
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Solution Approach

1.

Find the complete set of k's which stabilize the delay-free plant P,(s)
and denote this set as S,,.

Define the set S,, which is the set of k’s such that C(sk)P,(s) is an
improper transfer function or

lim |C(s,k)Py(s)| > 1

Note that the elements in S, make the closed-loop system unstable
after the delay is introduced. Exclude S, from S, and denote the new
set by S,, thatis, &1 = So\Sw
Compute the set S, :

S, =1{k |k &Sy and 3L € [0, Lo),w € R,s.t.C(jw) Py (jw)e " = —1}

S, is the set of k's which make C(s k)P(s) have a minimal destabilizing
delay that is less than or equal to L,.

4. The set Sk =8:1\S. is the solution
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Theorem

The set of controllers C(sk) denoted by S, is the complete set of

controllers in the unity feedback configuration that stabilize the plant
P(s) with delay L from O up to L,.

Proportional Controllers

Plant and controller:  P(s) = Py(s)e ™™ = [

To implement the method, the key is to find ;.
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The point the Nyquist curve crossing (-1,0): Find L and w satisfying

Lo -1

B

arglk,Fp(jw)l= L = 2hr—7, hel
[kpPo(jw)| = 1.

@ - ™
)
Kol v i ,

o p( ) |P0(]W)| 7
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. For k,>0, arg[ Py (jw)] + 7

w

Solve L(w)<L, to get a set of w: Ot
Set of k,>0 corresponding to Q*: 5;*

L(w, ky) = L(w) =

§,* consists of all the positive k,'s that make the system
have poles on the imaginary axis for certain L<L,.

« For K,<0,
Q- : asetof wfor L(w)<L,
S, + a set of k,<0 corresponding to Q-

The complete set S;: St =S/ US
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Algorithm for P Controllers
1. Compute the delay-free stabilizing k, set, S,

2. Find S,
« If deg[N(s)]>deg[D(s)], S\,=R. i.e., S,=0
« If deg[N(s)]<deg[D(s)], Sy=
» If deg[N(s)]=deg[D(s)],

S =Ly 111> 3211
where an, b, are the leading coefficients of D(s) and N(s).
Compute S; = S)\Sy
4. Compute S,

5. Compute Si=S8/\S;
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Example
s* 4+ 35 — 2 e
P(s) = S S e with delay up to Ly = 1.8

Lws @ (kp}O]

14

* For the delay-free plant,
the stabilizing k, range
S,=(-0.4093,1).

e Since
deg[N(s)]=2<deg[D(s)],
Sy=9and S;=S,

« For k,>0,
O+ =[1.5129, +0)

I I r I I I
0 0.5 1 1.5 2 2.5 3 35
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The corresponding S,+ = [0.4473, +0)

|k | vs @
o)
2.4 T T !

22r

181

16

[Kal=1.3691

k
Ik
—
i
I

T 4, =2.6817

121

;
\ K| =0.4135
' min
- \ W =12135
k=, =0.6025
pl

O.6F 207350

0.4 B e S P Py sl [
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For k,<0, Q- =[0.7359,
1.3312] U [2.6817, +0]

The corresponding S,
=[-0.6025, -0.4135] U
[-o0,-1.3691]

PID Controllers for Systems with Time-Delay

Lws m (kqulj
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Pl Controllers

k’i P ]{pS % k’z

PI Controller: C(s) =iky s s :

Open-loop transfer function:
G(s) = C(s)P(s) = C(s)Py(s)e 1 = Gy(s)e ¢

Consider Go(s) = C(s)Py(s) =

68
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Rewrite the magnitude and phase conditions,

arg|(k; +jkpw)R0(jw)] +

L(w,kp,ki) =
]ﬁi 25 —k2w2
\/RO (jw)|
Fix k,,, then
M a3 1 ]{?2 2
) = R S Y

Note that only those w’s with M(w)>0 need consideration
when computing S,.
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Algorithm for Pl Controllers
1. Compute S,

2. Compute S,
« If deg[N(s)]>deg[D(s)], Sy=R?, i.e., S,=0
o Ifdeg[N(s)]<deg[D(s)], Sy=0
 Ifdeg[N(s)]=deg[D(s)], Sn = {(km ki)lkp, ki € R and [kp| >
where a,, b, are leading coefficients of D(s) and N(s).
Compute S1 = So\Swy
4. For a fixed k;, find S,

An

by,

|

e Determine the sets O+ and Sf,kp :

» Determine the sets Q- and Sp,
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5. Compute
Sijp = Ska U Sg,kp
Sl,kp \SL,kp

SRk,

6. By sweeping over k,, the complete set of PI controllers that
stabilize all plant with delay up to L,

Sk =Sk,
k

p

et
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PID Controllers for an Arbitrary LTI Plant with Delay

Gl G e e e e s

where

kgs* + kps + ki N(s)
s D(s)

N
(kas® + ks + k) [ (s) l

Go(s) = C(s)Po(s) =

L2
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Rewrite the phase and magnitude conditions,

7+ arg ([(k; — kgw?) + jk,w] - Ro(jw))

1
ki — kgw? = =+ — (kyw)2.
% ¢mwmw i

L(wa kpa ki? kd) v

For fixed k,,

1 2
M= Gaye ~ ki~ ko = /F1(0)

Similar to the PI case, we only need to consider w’s with M(w)=0
when computing S, .
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Algorithm for PID Controllers

1.
2.

Compute S,

Compute S,

« If deg[N(s)]>deg[D(s)]-1, Sy=R3, i.e., S;=0
« If deg[N(s)]<deg[D(s)]-1, S\= @

- If deg[N(s)]=deg[D(s)]-1,

an

SN = {(kp,ki,kd)‘kp,ki,kd € R and ‘kd| = b

}

n—1

where a,, b, , are leading coefficients of D(s) and N(s).
Compute S1 = So\Sy

For a fixed k,, determine the set S,
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« Determine the set Q*and S, *
)= {w | w > 0and M(w) > 0 and

T T+ arg{[\/M(w)cj— Jkyw| - Ro(jw)} < Lo}

Ska = {(k“ kd> | (/fz, k’d) g SN,k:p and Jw € QO

such that k; — kgw? = M(w)}

Note that 5, ,,* is a set of straight lines in the (k;k,) space.
« Determine the sets Q" and 5, ;
° Compute SL,kp = Ij:kp U SI:kp and SR,kzp = Sl,k:p\SL,kp

5. By sweeping over k,, the complete set of PID controllers that
stabilize all plants with delay up to L,:

Sr =S,
k, 75
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k
P(s) = Tt 16_L8, L € [0, Ly]

The stabilizing PID parameters for the delay-free plant are:

i Y i T
S() = {(kp,ki,kd) | ]Cp 1 —E,ki £ O, kd > _E or kp < —E,ki =1 O,]Cd = —E}

Since deg[D(s)]-deg[N(s)]=1,
Sy = {(kp,ki,kd) | kp, kis kg € R and |kq| > |%'}

Assuming k>0, we have

Ktk nl ok o et e ] Tl e B for T > 0
P P k k k

S1 = S\Sy =
{(kp, kiska) | kp < —3, ki < 0,7 < kg < —7F for T < 0
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For T>0, with different k, values, the stabilizing regions of (k; k) take
on different but simple shapes:

Tik

“Tik
1
7 B
T
Tik
4 bl
—Tik
_2 | 1 | | 1 | 1
0 1 ) 3 4 5 B 7 8
k
2_ 1
EE— T
T oF I:C:]
-1 —Tik
_a | | | | | | | |
0 1 o 3 4 5 B 7 B

For -1/k<k,<1/k,
Skip 1S @ trapezoid.

(a)

For k,>1/K, Sgy, IS
a quadrilateral. (b)
and (c)

it
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Example

P(s) = §% —4s® + 5+ 2 i

55+ 8% + 3253 + 4652 1 465 + 17|

with L up to L,=1, that is, for all L€[0, 1].

» Fix k,=1, compute the stabilizing k;, kq values for the delay-free
plant, say Sy, ;

/8
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« Since deg[D(s)]-deg[N(s)]>1, Sy=9 and S=S5,
e For k; — kgw® =+/M(w) >0, the set of w where L(w)<L,is
O+ =[0.524825, 0.742302]U[2.57318, +)
a0
40

30

20¢

10}

L(w) vs. w with k; — kqw?® = /M (w)
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The corresponding values of /M (w)
S, k7 : the straight lines defined by

ki — kgw? =/ M(w) for weQ?

200}
150}
100}

5[:}

M (w) vs. w with k, =1
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For &, — kyw? = —/M(w) <0,

Q" = [1.35894, 1.8659]U[4.37326, +00)

120|
100]

20|

ol
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Finally, we exclude s, ,,* and S, ,,~ from S, to get S,

Stabilizing region
of (ki, ky) with
k,=1 for plant
with delay up to 1.

B
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