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History

Classical Control - single controller (PID, lead/lag) is designed based on transfer

function or frequency response data

Modern/Post Modern Control (H∞, H2, ℓ1) - optimal controller of high order based

on state space model

Fuzzy Neural Control- model free approach but no guarantee of stability or

performance

Our Recent Results - complete set of PID controllers achieving stability and

performance based on transfer function model

Present Paper - extend these results to the case where only data is available
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Drawbacks of Identification

States have no physical significance
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Drawbacks of Identification

States have no physical significance

Parameters in the model have no physical significance

State variables have no meaningful dimensions or units
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Main Idea:

To synthesize the set of all stabilizing PID/First Order controllers from experimental

data of the plant rather than from mathematical models.

Data Based Design of 3 Term Controllers – p. 4/109



Main Idea:

To synthesize the set of all stabilizing PID/First Order controllers from experimental

data of the plant rather than from mathematical models.

To synthesize the set of all PID/First Order controllers satisfying the given

performance requirements from the experimental data of the plant.

Data Based Design of 3 Term Controllers – p. 4/109



Main Idea:

To synthesize the set of all stabilizing PID/First Order controllers from experimental

data of the plant rather than from mathematical models.

To synthesize the set of all PID/First Order controllers satisfying the given

performance requirements from the experimental data of the plant.

Knowledge of the frequency response magnitude and phase, equivalently,

P (jω), ω ∈ [0,∞)

Data Based Design of 3 Term Controllers – p. 4/109



Main Idea:

To synthesize the set of all stabilizing PID/First Order controllers from experimental

data of the plant rather than from mathematical models.

To synthesize the set of all PID/First Order controllers satisfying the given

performance requirements from the experimental data of the plant.

Knowledge of the frequency response magnitude and phase, equivalently,

P (jω), ω ∈ [0,∞)

Knowledge of the number of RHP poles p+.
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Assumption

The plant is stabilizable (i.e., N(s) and D(s) are coprime). where

P (s) =
N(s)

D(s)
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Assumption

The plant is stabilizable (i.e., N(s) and D(s) are coprime). where

P (s) =
N(s)

D(s)

The plant has no jω poles.

Only available information

P (jω) for ω ∈ [0,∞)

Number of plant RHP poles, p+.
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Preliminaries

Consider a real rational function

R(s) =
A(s)

B(s)

where A(s) and B(s) are polynomials of real coefficients with degrees m and n,

respectively. Assume that A(s) and B(s) have no zeros on the jω axis.
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A(s)

B(s)

where A(s) and B(s) are polynomials of real coefficients with degrees m and n,

respectively. Assume that A(s) and B(s) have no zeros on the jω axis.

Write

R(jω) = Rr(ω) + jRi(ω)

where Rr(ω) and Ri(ω) are real rational functions in ω. Note that Rr(ω) and Ri(ω)

have no real poles for ω ∈ (−∞, +∞).
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Preliminaries

Consider a real rational function

R(s) =
A(s)

B(s)

where A(s) and B(s) are polynomials of real coefficients with degrees m and n,

respectively. Assume that A(s) and B(s) have no zeros on the jω axis.

Write

R(jω) = Rr(ω) + jRi(ω)

where Rr(ω) and Ri(ω) are real rational functions in ω. Note that Rr(ω) and Ri(ω)

have no real poles for ω ∈ (−∞, +∞).

Let

0 = ω0 < ω1 < ω2 < · · · < ωl−1

and define ωl = ∞− denote the finite zeros of Ri(ω) = 0
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Real Hurwitz Signature Lemma

Define

sgn[x] =

8
>><

>>:

+1 if x > 0

0 if x = 0

−1 if x < 0

Data Based Design of 3 Term Controllers – p. 7/109



Real Hurwitz Signature Lemma

Define

sgn[x] =

8
>><

>>:

+1 if x > 0

0 if x = 0

−1 if x < 0

If n − m is even

σ(R) =

 

sgn[Rr(ω+
0 )] + 2

l−1X

j=1

(−1)jsgn[Rr(ωj)] + (−1)lsgn[Rr(ωl)]

!

·(−1)l−1sgn[Ri(∞−)]

If n − m is odd

σ(R) =

 

sgn[Rr(ω0)] + 2

l−1X

j=1

(−1)jsgn[Rr(ωj)]

!

(−1)l−1sgn[Ri(∞−)]
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Complex Hurwitz Signature Lemma

Consider a complex rational function

Q(s) =
D(s)

E(s)
, Q(jω) = Qr(ω) + jQi(ω)

where Qr(ω) and Qi(ω) are real rational functions. Qr(ω) and Qi(ω) have no real poles

for ω ∈ (−∞, +∞).
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Complex Hurwitz Signature Lemma

Consider a complex rational function

Q(s) =
D(s)

E(s)
, Q(jω) = Qr(ω) + jQi(ω)

where Qr(ω) and Qi(ω) are real rational functions. Qr(ω) and Qi(ω) have no real poles

for ω ∈ (−∞, +∞).

Lemma

σ(Q) =

 
l−1X

j=1

(−1)l−1−jsgn[Qr(ωj)]

!

sgn[Qi(∞−)]
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PID controller design

+

−

C(s) P(s)
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PID controller design

+

−

C(s) P(s)

Let the PID controller be of the form

C(s) =
Ki + Kps + Kds2

s(1 + sT )
, T > 0
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Main Results

The complete set of stabilizing PID gains for a given LTI plant can be found from

the frequency response data P (jω) and the knowledge of the number of RHP

poles.
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Main Results

The complete set of stabilizing PID gains for a given LTI plant can be found from

the frequency response data P (jω) and the knowledge of the number of RHP

poles.

Using the result above, the subset of the PID gains that satisfy the several given

performance requirements.
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PID Controller Design

Let us consider the plant and PID controller pair of the form:

P (s) =
N(s)

D(s)

C(s) =
Ki + Kps + Kds2

s(1 + sT )
, T > 0

where deg[D(s)] = n and deg[N(s)] = m.
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PID Controller Design

Let us consider the plant and PID controller pair of the form:

P (s) =
N(s)

D(s)

C(s) =
Ki + Kps + Kds2

s(1 + sT )
, T > 0

where deg[D(s)] = n and deg[N(s)] = m.

Then consider the rational function

F (s) = s(1 + sT ) +
`
Ki + Kps + Kds2

´
P (s)

Closed-loop stability is equivalent to the condition that zeros of F (s) lie in the LHP. This

is also equivalent to the condition

σ(F (s)) = n + 2 − (p− − p+)
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PID Controller Design Continue ...

Now consider the rational function

F̄ (s) = F (s)P (−s)
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PID Controller Design Continue ...

Now consider the rational function

F̄ (s) = F (s)P (−s)

Note that

σ
`
F̄ (s)

´
= σ(F (s)) + σ(P (−s))

= n + 2 − (p− − p+) + (z+ − z−) − (p+ − p−)

= n + 2 − z+ + z−

= n − m
| {z }

relative degree of P (s)

−2z+ + 2
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PID Controller Design Continue ...

Write

F̄ (jω) = jω(1 + jωT )P (−jω) + (Ki + jωKp − ω2Kd)P (jω)P (−jω)

= F̄r(ω) + jF̄i(ω)

where

F̄r(ω) = (Ki − Kdω2)|P (jω)|2 − ω2TPr(ω) + ωPi(ω)

F̄i(ω) = ω
`
Kp|P (jω)|2 + Pr(ω) + ωTPi(ω)

´
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PID Controller Design Continue ...

Write

F̄ (jω) = jω(1 + jωT )P (−jω) + (Ki + jωKp − ω2Kd)P (jω)P (−jω)

= F̄r(ω) + jF̄i(ω)

where

F̄r(ω) = (Ki − Kdω2)|P (jω)|2 − ω2TPr(ω) + ωPi(ω)

F̄i(ω) = ω
`
Kp|P (jω)|2 + Pr(ω) + ωTPi(ω)

´

Kp appears only in F̄i(ω)

Ki, Kd only in F̄r(ω)
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Lemma: Determining the required signature

Relative Degree and Net Phase Change:

A. In the Bode magnitude plot of the LTI system P (jω), the high frequency slope is

−(n − m)20dB/decade where n − m is the relative degree of the plant P (s).
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Lemma: Determining the required signature

Relative Degree and Net Phase Change:

A. In the Bode magnitude plot of the LTI system P (jω), the high frequency slope is

−(n − m)20dB/decade where n − m is the relative degree of the plant P (s).

B. The net change of phase of P (jω), ω ∈ [0,∞), denoted ∆∞
0 (φ) is:

∆∞
0 (φ) = −

ˆ
(n − m) − 2(p+ − z+)

˜ π

2

where p+ and z+ are numbers of RHP poles and zeros of P (s), respectively.
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Proof of Lemma

The statement A is obvious from the property of Bode magnitude plot.
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Proof of Lemma

The statement A is obvious from the property of Bode magnitude plot.

Let p− and z− are number of LHP poles and zeros of P (s). Then the net phase

change of P (jω) for ω ∈ [0,∞) is

∆∞
0 (φ) =

ˆ
(z− − z+) − (p− − p+)

˜ π

2

= −
ˆ
(n − m) − 2(p+ − z+)

˜ π

2
.
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Proof of Lemma

The statement A is obvious from the property of Bode magnitude plot.

Let p− and z− are number of LHP poles and zeros of P (s). Then the net phase

change of P (jω) for ω ∈ [0,∞) is

∆∞
0 (φ) =

ˆ
(z− − z+) − (p− − p+)

˜ π

2

= −
ˆ
(n − m) − 2(p+ − z+)

˜ π

2
.

From known n − m from Bode plot, given p+, and measured ∆∞
0 (φ), we can

compute z+.
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Determining z+ and p+

Assume that a known feedback controller C(s) stabilizes the plant P and the

closed-loop response can be measured and denoted by

G(jω), for ω ∈ [0,∞)
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Determining z+ and p+

Assume that a known feedback controller C(s) stabilizes the plant P and the

closed-loop response can be measured and denoted by

G(jω), for ω ∈ [0,∞)

Then P (jω) is the computed frequency response of the unstable plant

P (jω) =
G(jω)

C(jω)(1 − G(jω))
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Determining z+ and p+

Assume that a known feedback controller C(s) stabilizes the plant P and the

closed-loop response can be measured and denoted by

G(jω), for ω ∈ [0,∞)

Then P (jω) is the computed frequency response of the unstable plant

P (jω) =
G(jω)

C(jω)(1 − G(jω))

Knowledge of C(s) and G(jω) is sufficient to determine z+ and p+.
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Determining z+ and p+ (continue...)

Lemma:

z+ =
1

2

ˆ
−rP − rC − 2z+

c − σ(G)
˜

p+ =
1

2
[σ(P ) − σ(G) − rC ] − z+

c

where z+
c denotes the number of RHP zeros of C(s).
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Proof of Lemma

G(s) =
P (s)C(s)

1 + P (s)C(s)

since G(s) is stable,

σ(G) =
`
z− + z−c

´
−
`
z+ + z+

c

´
− (n + nc) = −rP − rC − 2z+

c − 2z+

which implies

z+ =
1

2

ˆ
−rP − rC − 2z+

c − σ(G)
˜
.
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Proof of Lemma

G(s) =
P (s)C(s)

1 + P (s)C(s)

since G(s) is stable,

σ(G) =
`
z− + z−c

´
−
`
z+ + z+

c

´
− (n + nc) = −rP − rC − 2z+

c − 2z+

which implies

z+ =
1

2

ˆ
−rP − rC − 2z+

c − σ(G)
˜
.

From σ(P ) applied to P (s), we have p+ = z+ + 1
2
σ(P ) + 1

2
rP .

Then we now have

p+ =
1

2
[σ(P ) − σ(G) − rC ] − z+

c .
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Determining the zeros of F̄i(ω) = 0

Recall

F̄i(ω) = ω(Kp|P (jω)|2 + Pr(ω) + ωTPi(ω)) = 0

Data Based Design of 3 Term Controllers – p. 19/109



Determining the zeros of F̄i(ω) = 0

Recall

F̄i(ω) = ω(Kp|P (jω)|2 + Pr(ω) + ωTPi(ω)) = 0

Then for ω 6= 0,

Kp = −Pr(ω) + ωTPi(ω)

|P (jω)|2

or

Kp = − cos φ(ω) + ωT sin φ(ω)

|P (jω)|
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PID Controller Design Continue ...

The set of PID stabilizing controllers can be found as follows:

Fix K = K∗
p and set F̄i(ω, K∗

p ) = 0.
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PID Controller Design Continue ...

The set of PID stabilizing controllers can be found as follows:

Fix K = K∗
p and set F̄i(ω, K∗

p ) = 0.

Let it ∈ {+1, 0,−1} and j ∈ {+1,−1}.
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PID Controller Design Continue ...

The set of PID stabilizing controllers can be found as follows:

Fix K = K∗
p and set F̄i(ω, K∗

p ) = 0.

Let it ∈ {+1, 0,−1} and j ∈ {+1,−1}.

Determine strings of integers {i0, i1, · · ·} satisfying:
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PID Controller Design Continue ...

The set of PID stabilizing controllers can be found as follows:

Fix K = K∗
p and set F̄i(ω, K∗

p ) = 0.

Let it ∈ {+1, 0,−1} and j ∈ {+1,−1}.

Determine strings of integers {i0, i1, · · ·} satisfying:

For n − m even:

n

i0 − 2i1 + 2i2 + · · · + (−1)i−12il−1 + (−1)lil

o

· (−1)l−1j

= n − m + 2z+ + 2
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PID Controller Design Continue ...

The set of PID stabilizing controllers can be found as follows:

Fix K = K∗
p and set F̄i(ω, K∗

p ) = 0.

Let it ∈ {+1, 0,−1} and j ∈ {+1,−1}.

Determine strings of integers {i0, i1, · · ·} satisfying:

For n − m even:

n

i0 − 2i1 + 2i2 + · · · + (−1)i−12il−1 + (−1)lil

o

· (−1)l−1j

= n − m + 2z+ + 2

For n − m odd:

˘
i0 − 2i1 + 2i2 + · · · + (−1)i−12il−1

¯
· (−1)l−1j

= n − m + 2z+ + 2.
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PID Controller Design Continue ...

For each string (sign sequence of appropriate number of terms) satisfying the

signature formula, the conditions for stability are:

sgn [R(ωt, Ki, Kd)] it > 0, for t = 0, 1, 2, · · · ,
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PID Controller Design Continue ...

For each string (sign sequence of appropriate number of terms) satisfying the

signature formula, the conditions for stability are:

sgn [R(ωt, Ki, Kd)] it > 0, for t = 0, 1, 2, · · · ,

Each valid string produces a set of linear inequalities in (Ki, Kd) space.
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Example

Consider the stable plant
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−z+)

!
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Example (continue...)

The required signature for stability can now be determined and is

σ(F̄ ) = (n − m) + 2z+ + 2 = (2) + 2(2) + 2 = 8.
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Example (continue...)

The required signature for stability can now be determined and is

σ(F̄ ) = (n − m) + 2z+ + 2 = (2) + 2(2) + 2 = 8.

Since n − m is even, we have

i0 − 2i1 + 2i2 − 2i3 + 2i4 − · · · + (−1)lil = 8,

and it is clear that at least four terms are required to satisfy the above.
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Example (continue...)

The required signature for stability can now be determined and is

σ(F̄ ) = (n − m) + 2z+ + 2 = (2) + 2(2) + 2 = 8.

Since n − m is even, we have

i0 − 2i1 + 2i2 − 2i3 + 2i4 − · · · + (−1)lil = 8,

and it is clear that at least four terms are required to satisfy the above.

In other words l ≥ 4.
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Example (continue...)

From the figure it is easy to see that K∗
p has at most three positive frequencies as

solutions and therefore we have

i0 − 2i1 + 2i2 − 2i3 + i4 = 8.
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ω
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Example (continue...)

Fix Kp = 1 and compute the set of ω’s that satisfies

− cos φ(ω) + ωT sin φ(ω)

|P (jω)| = 1.
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Example (continue...)

This leads to the requirement

i0 − 2i1 + 2i2 − 2i3 = 7
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Example (continue...)

This leads to the requirement

i0 − 2i1 + 2i2 − 2i3 = 7

giving the feasible string

F = {i0, i1, i2, i3} = {1, − 1, 1, − 1}.
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Example (continue...)

This leads to the requirement

i0 − 2i1 + 2i2 − 2i3 = 7

giving the feasible string

F = {i0, i1, i2, i3} = {1, − 1, 1, − 1}.

Thus, we have the following set of linear inequalities for stability:

0.0138Ki > 0

−0.1390 + 0.0364Ki − 0.0201Kd < 0

0.2791 + 0.0229Ki − 0.0797Kd > 0

−0.1349 + 0.0003Ki − 0.0182Kd < 0
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Example: Stabilizing PID Set for Kp = 1
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Example: Entire Stabilizing PID Set
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Performance Specifications

Many performance attainment problems can be cast as stabilization of families of real

and complex plants. For example,

The problem of achieving a gain margin is equivalent to stabilizing the family of real

plants

Pc(s) = {KP (s) : K ∈ [Kmin, Kmax]} .
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Performance Specifications

Many performance attainment problems can be cast as stabilization of families of real

and complex plants. For example,

The problem of achieving a gain margin is equivalent to stabilizing the family of real

plants

Pc(s) = {KP (s) : K ∈ [Kmin, Kmax]} .

The problem of achieving prescribed phase margin θm is equivalent to stabilizing

the family of complex plants

Pc(s) =
n

e−jθP (s) : θ ∈ [0, θm]
o

.
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The problem of achieving an H∞ norm specification on the sensitivity function

S(s), that is, ‖W (s)S(s)‖∞ < γ is equivalent to stabilizing the family of complex

plants

Pc(s) =

("

1

1 + 1
γ

ejθW (s)

#

P (s) : θ ∈ [0, 2π]

)

.
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The problem of achieving an H∞ norm specification on the sensitivity function

S(s), that is, ‖W (s)S(s)‖∞ < γ is equivalent to stabilizing the family of complex

plants

Pc(s) =

("

1

1 + 1
γ

ejθW (s)

#

P (s) : θ ∈ [0, 2π]

)

.

The problem of achieving an H∞ norm specification on the complementary

sensitivity function T (s), that is, W (s)T (s)‖∞ < γ is equivalent to stabilizing the

family of complex plants

Pc(s) =



P (s)

»

1 +
1

γ
ejθW (s)

–

: θ ∈ [0, 2π]

ff

.
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Assumption

The only information available to the designer is:

Knowledge of the frequency response magnitude and phase, equivalently, P c(jω),

ω ∈ (−∞, +∞).

Knowledge of the number of RHP poles, p+.
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Determining Performance Set

The complete set of stabilizing PID gains for a given complex LTI plant can be

found from the frequency response data P c(jω) and the knowledge of the number

of RHP poles
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Determining Performance Set

The complete set of stabilizing PID gains for a given complex LTI plant can be

found from the frequency response data P c(jω) and the knowledge of the number

of RHP poles

The set of stabilizing PID gains can be computed by the following procedure:

Data Based Design of 3 Term Controllers – p. 32/109



Determining Performance Set

The complete set of stabilizing PID gains for a given complex LTI plant can be

found from the frequency response data P c(jω) and the knowledge of the number

of RHP poles

The set of stabilizing PID gains can be computed by the following procedure:

Determine the relative degree nc − mc from the high frequency slope of the

Bode magnitude plot where nc and mc are degrees of numerator and

denominator of Pc.
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Determining Performance Set

The complete set of stabilizing PID gains for a given complex LTI plant can be

found from the frequency response data P c(jω) and the knowledge of the number

of RHP poles

The set of stabilizing PID gains can be computed by the following procedure:

Determine the relative degree nc − mc from the high frequency slope of the

Bode magnitude plot where nc and mc are degrees of numerator and

denominator of Pc.

Fix Kp = K∗
p and solve

K∗
p = − cos φ(ω) + ωT sin φ(ω)

|P c(jω)|

and let ω1 < ω2 < · · · < ωl−1 denote the distinct frequencies which are

solutions of the above.
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Set ω0 = −∞, ωl = +∞ and determine all strings of integers it ∈ {+1, 0,−1}
and j ∈ {−1, +1} such that

l−1X

r=1

(−1)l−1−rir · j = nc − mc + 2z+
c + 2

where nc and mc denote the numerator and denominator degrees of P c(s) and

z+
c the number of RHP zeros.
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Set ω0 = −∞, ωl = +∞ and determine all strings of integers it ∈ {+1, 0,−1}
and j ∈ {−1, +1} such that

l−1X

r=1

(−1)l−1−rir · j = nc − mc + 2z+
c + 2

where nc and mc denote the numerator and denominator degrees of P c(s) and

z+
c the number of RHP zeros.

For the fixed Kp = K∗
p chosen in Step 1, solve for the stabilizing (Ki, Kd) from:

»

Ki − Kdω2
t +

ωt sin φ(ωt) − ω2
t T cos φ(ωt)

|P c(jω)|

–

it > 0

for t = 0, 1, · · ·.
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Set ω0 = −∞, ωl = +∞ and determine all strings of integers it ∈ {+1, 0,−1}
and j ∈ {−1, +1} such that

l−1X

r=1

(−1)l−1−rir · j = nc − mc + 2z+
c + 2

where nc and mc denote the numerator and denominator degrees of P c(s) and

z+
c the number of RHP zeros.

For the fixed Kp = K∗
p chosen in Step 1, solve for the stabilizing (Ki, Kd) from:

»

Ki − Kdω2
t +

ωt sin φ(ωt) − ω2
t T cos φ(ωt)

|P c(jω)|

–

it > 0

for t = 0, 1, · · ·.

Repeat the previous three steps by updating Kp over prescribed ranges.
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Performance Example

Taking the same frequency domain data set P(jω) used in the previous example, we

consider the problem of achieving an H∞ norm specification on the complementary

sensitivity function T (s), that is,

‖W (s)T (s)‖∞ < 1 where W (s) =
s + 0.1

s + 1
.

By solving the complex stabilization problem, we have the stabilizing PID controller

parameter region that satisfies the given H∞ norm specification.

Data Based Design of 3 Term Controllers – p. 34/109



The complete set of Stabilizing PID gains for H∞ specification when Kp = 1
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Nyquist plot of W (s)T (s)

By selecting a point, we verify that the point selected satisfied the given H∞

specification.
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Entire set of stabilizing PID gains satisfying the H∞ specification

By sweeping Kp, we have the entire stabilizing PID gains that satisfy the given H∞

specification as shown in Figure.

0

1

2

3

4

−4

−2

0

2

4
−6

−4

−2

0

2

K
p

K
i

K
d

Data Based Design of 3 Term Controllers – p. 37/109



Example with Gain/Phase Margin Specification

Consider the following nonminimum phase plant:

P (s) =

»
s3 − 4s2 + s + 2

s5 + 8s4 + 32s3 + 46s2 + 46s + 17

–

e−s
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Example with Gain/Phase Margin Specification

Consider the following nonminimum phase plant:

P (s) =

»
s3 − 4s2 + s + 2

s5 + 8s4 + 32s3 + 46s2 + 46s + 17

–

e−s

We wish to find the entire set of controllers that simultaneously satisfies the following

specifications:

PID controllers must stabilize the given plant with a delay

The closed-loop system must guarantee the following gain and phase margins:
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Example with Gain/Phase Margin Specification

Consider the following nonminimum phase plant:

P (s) =

»
s3 − 4s2 + s + 2

s5 + 8s4 + 32s3 + 46s2 + 46s + 17

–

e−s

We wish to find the entire set of controllers that simultaneously satisfies the following

specifications:

PID controllers must stabilize the given plant with a delay

The closed-loop system must guarantee the following gain and phase margins:

Gain margin : K+ ≥ 2 (about 6 [dB])
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Example with Gain/Phase Margin Specification

Consider the following nonminimum phase plant:

P (s) =

»
s3 − 4s2 + s + 2

s5 + 8s4 + 32s3 + 46s2 + 46s + 17

–

e−s

We wish to find the entire set of controllers that simultaneously satisfies the following

specifications:

PID controllers must stabilize the given plant with a delay

The closed-loop system must guarantee the following gain and phase margins:

Gain margin : K+ ≥ 2 (about 6 [dB])

Phase margin : [θ−, θ+] = [−10o, 60o]

Data Based Design of 3 Term Controllers – p. 38/109



(A) All Stabilizing PID Controllers

The feasible ranges of kp given are: [−19.1,−8.5], [−8.5, 4.23], [4, 23,∞].

We can easily conclude that the only region that contains the solutions is [−8.5, 4.23].

The complete set of stabilizing PID controllers is:
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(B) All PID Satisfying the GM and PM Requirement

We obtained the final result.
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2-D Regions with kp = 0.88

Skp
: stable set with a fixed kp SC

kp
: unstable set

Skp
(G) : set satisfying the GM requirement Skp

(φ) : set satisfying the PM requirement

Skp
(G) ∩ Skp

(φ) set satisfying both gain and phase margin requirements
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First Order Controller Design

Data Based Design of 3 Term Controllers – p. 42/109



First Order Controller Design

Consider the First order controller of the form

C(s) =
x1s + x2

s + x3

for an LTI plant.
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First Order Controller Design

Consider the First order controller of the form

C(s) =
x1s + x2

s + x3

for an LTI plant.

Assumption

The plant has no jω poles or zeros.

Available frequency domain data P (jω) for ω ∈ [0,∞).

Knowledge of p+.
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Root Invariant Regions

Let

P (jω) = Pr(ω) + jPi(ω)

F (s) = (s + x3) + (sx1 + x2)P (s)
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Root Invariant Regions

Let

P (jω) = Pr(ω) + jPi(ω)

F (s) = (s + x3) + (sx1 + x2)P (s)

For closed-loop stability, it is necessary and sufficient that

σ(F (s)) = n + 1 − (p− − p+)
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Root Invariant Regions

Let

P (jω) = Pr(ω) + jPi(ω)

F (s) = (s + x3) + (sx1 + x2)P (s)

For closed-loop stability, it is necessary and sufficient that

σ(F (s)) = n + 1 − (p− − p+)

Let

F̄ (s) = F (s)P (−s)

and the stability condition is

F̄ (s) = (s + x3)P (−s) + (sx1 + x2)P (s)P (−s)
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Root Invariant Region (continue...)

In other words,

F̄ (ω, x1, x2, x3) = x2|P (ω)|2 + ωPi(ω) + x3Pr(ω)
| {z }

F̄r(ω,x1,x2,x3)

+ω
`
x1|P (ω)|2 − x3Pi(ω) + Pr(ω)

´

| {z }

F̄i(ω,x1,x2,x3)

.
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Root Invariant Region (continue...)

In other words,

F̄ (ω, x1, x2, x3) = x2|P (ω)|2 + ωPi(ω) + x3Pr(ω)
| {z }

F̄r(ω,x1,x2,x3)

+ω
`
x1|P (ω)|2 − x3Pi(ω) + Pr(ω)

´

| {z }

F̄i(ω,x1,x2,x3)

.

The curves F̄r(ω, ·) = 0 and F̄i(ω, ·) = 0, 0 ≤ ω < ∞ along with the F̄ (0, ·) = 0

and F̄ (∞, ·) = 0 partition the (x1, x2, x3) parameter space into signature invariant

regions.
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Root Invariant Region (continue...)

In other words,

F̄ (ω, x1, x2, x3) = x2|P (ω)|2 + ωPi(ω) + x3Pr(ω)
| {z }

F̄r(ω,x1,x2,x3)

+ω
`
x1|P (ω)|2 − x3Pi(ω) + Pr(ω)

´

| {z }

F̄i(ω,x1,x2,x3)

.

The curves F̄r(ω, ·) = 0 and F̄i(ω, ·) = 0, 0 ≤ ω < ∞ along with the F̄ (0, ·) = 0

and F̄ (∞, ·) = 0 partition the (x1, x2, x3) parameter space into signature invariant

regions.

By plotting these curves and selecting a test point from each of these regions we

can determine the stability regions corresponding to those with signature equal to

n − m + 2z+ + 1.
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Procedure for First Order Controller Design

1. Determine the relative degree n − m from the high frequency slope of the Bode

magnitude plot.
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Procedure for First Order Controller Design

1. Determine the relative degree n − m from the high frequency slope of the Bode

magnitude plot.

2. Let ∆∞
0 [φ(ω)] denote the net change of phase P (ω) for ω ∈ [0,∞). Determine

z+ from knowledge of p+ and

∆∞
0 [φ(ω)] = −

ˆ
(n − m) − 2(p+ − z+)

˜ π

2
.
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Procedure for First Order Controller Design

1. Determine the relative degree n − m from the high frequency slope of the Bode

magnitude plot.

2. Let ∆∞
0 [φ(ω)] denote the net change of phase P (ω) for ω ∈ [0,∞). Determine

z+ from knowledge of p+ and

∆∞
0 [φ(ω)] = −

ˆ
(n − m) − 2(p+ − z+)

˜ π

2
.

3. Plot the curves below in the (x1, x2) plane for a fixed x3.

x3 + x2P (0) = 0
8
<

:

x1(ω) = 1
|P (ω)|

“
sin φ(ω)

ω
x3 − cos φ(ω)

”

, for 0 < ω < ∞
x2(ω) = − 1

|P (ω)|
(cos φ(ω)x3 + ω sin φ(ω)) , for 0 < ω < ∞

1 + P (∞)x2 = 0.
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Procedure for First Order Controller Design (continue...)

4. The curves x1(ω) and x2(ω) partition the (x1, x2) plane into disjoint signature

invariant regions. The stabilizing regions correspond to those for which F̄ (s) has a

signature of n − m + 2z+ + 1.
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Example

For illustration, we have collected the frequency domain (Nyquist-Bode) data of a

stable plant:

P(ω) = {P (ω) : ω ∈ (0, 10) sampled every 0.01}.

Data Based Design of 3 Term Controllers – p. 47/109



Example

For illustration, we have collected the frequency domain (Nyquist-Bode) data of a

stable plant:

P(ω) = {P (ω) : ω ∈ (0, 10) sampled every 0.01}.

The Nyquist plot of the plant obtained is:
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Example (continue...)

From the data P(ω), we have P (0) = 13.333 and P (∞) = 0. Then it is easy to

see that the straight line is not applicable.
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Example (continue...)

From the data P(ω), we have P (0) = 13.333 and P (∞) = 0. Then it is easy to

see that the straight line is not applicable.

After fixing x3 = 0.2, the data points representing the straight line and the curve

are depicted.
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Example (continue...)

From the data P(ω), we have P (0) = 13.333 and P (∞) = 0. Then it is easy to

see that the straight line is not applicable.

After fixing x3 = 0.2, the data points representing the straight line and the curve

are depicted.

By testing a point for each root invariant region, we have the following.
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Example (continue...)

We now consider the problem of determining the entire set of first

order stabilizing controllers satisfying the required closed-loop

performance described by the requirement on the H∞ norm of the

weighted complementary sensitivity function:

‖W (ω)T (ω)‖∞ < γ, for all ω
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Example (continue...)

We now consider the problem of determining the entire set of first

order stabilizing controllers satisfying the required closed-loop

performance described by the requirement on the H∞ norm of the

weighted complementary sensitivity function:

‖W (ω)T (ω)‖∞ < γ, for all ω

This is equivalent to the problem of simultaneously stabilizing the

specified complex family as well as the original plant P (s).
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Example (continue...)

In this problem, we let γ = 1 and x3 = 2.5. We superimpose on the top of the

stabilizing region shown (left) for the real plant, the stabilizing sets for the complex

plant families Pc(ω, θ) for θ = 0, π
3

, 2π
3

, π, 4π
3

, 5π
3

, 2π are plotted (right).
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Example (continue...)

To verify, a number of points inside the performance region, construct the corresponding

controllers, and Nyquist plots of W (s)T (s) have been plotted as shown. These points

are shown as “*” in (right). We observe from the Nyquist plots and every test set satisfies

the H∞ performance requirement.
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Example of FO Controller Design

Consider an unstable plant with time delay.

G(s) =

»
s + 1

s4 + 8s3 + 48s2 + 46s − 1

–

e−s

The design specifications are given as follows:

the closed-loop system must satisfy the following gain and phase margin

requirements:
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(A) The Complete Set of Stabilizing FO Controllers

The feasible range is found as: x3 ∈ [−6,∞].

We chose to execute the algorithm for x3 ∈ [−6, 70].

Then we obtain the the set of FO Controller parameters so that the each and every

corresponding closed-loop system satisfies the given gain and phase margin

requirements.
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(B) A Set of FOC that Meets the Desired Overshoot and Settling Time Requirements

Computing a feasible range of the generalized time constant based on the CRA, the

feasible range of the time constant is obtained as: τ ∈ [2.692, 6.258].
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Step responses with FO Controllers in S∗
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2-D set of FO Controllers, S∗
x3
, when x3 = 53.1

To proceed, we pick a FO Controller from the controller set S∗ and examine various

performance of the corresponding closed-loop system. In this example, we first select

x3 = 53.1 and the corresponding 2-D set is depicted as in figure.
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Various characteristics of the CL system with the selected FOC

A selection of the controller point from the set S∗
x3

with the fixed x3 enables us to display

the following six figures displaying various characteristics of the closed-loop system with

the FO Controller chosen.
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The top left figure shows the controller set S∗
x3

and “+” indicates the selected

controller of the parameter values:

x1 = 83.3, x2 = 831, x3 = 53.1.
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The top left figure shows the controller set S∗
x3

and “+” indicates the selected

controller of the parameter values:

x1 = 83.3, x2 = 831, x3 = 53.1.

The top right figure shows the step response of the closed-loop system. Two

figures in the middle show the Nyquist plot, and the closed-loop poles and zeros.

The bottom two figures show the values of gain and phase margins, and the

control input signal, respectively.
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Data-Robust Design (An Example)

What we know:

P (jω) ± 20% for all ω
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Data-Robust Design (An Example)

What we know:

P (jω) ± 20% for all ω

Number of RHP zeros is z+ = 2

Relative degree is rP = 1 due to high frequency slope (-20db/decade)

Signature required is rP + 2z+ + 2 = 1 + 2(2) + 2 = 7.
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Data-Robust Design (An Example)

What we know:

P (jω) ± 20% for all ω

Number of RHP zeros is z+ = 2

Relative degree is rP = 1 due to high frequency slope (-20db/decade)

Signature required is rP + 2z+ + 2 = 1 + 2(2) + 2 = 7.

It requires at least 3 frequencies to satisfy Kp = g(ω).

Notations:

P(jω) = Family of response shown in Bode plot

Pmax
r (ω) = max

P (jω)∈P(jω)
Pr(ω), for every ω

Pmin
r (ω) = min

P (jω)∈P(jω)
Pr(ω), for every ω

Pmax
i (ω) = max

P (jω)∈P(jω)
Pi(ω), for every ω

Pmin
i (ω) = min

P (jω)∈P(jω)
Pi(ω), for every ω
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P (jω) ± 20% for all ω

Number of RHP zeros is z+ = 2

Relative degree is rP = 1 due to high frequency slope (-20db/decade)

Signature required is rP + 2z+ + 2 = 1 + 2(2) + 2 = 7.

It requires at least 3 frequencies to satisfy Kp = g(ω).

Notations:

P(jω) = Family of response shown in Bode plot

Pmax
r (ω) = max

P (jω)∈P(jω)
Pr(ω), for every ω

Pmin
r (ω) = min

P (jω)∈P(jω)
Pr(ω), for every ω

Pmax
i (ω) = max

P (jω)∈P(jω)
Pi(ω), for every ω

Pmin
i (ω) = min

P (jω)∈P(jω)
Pi(ω), for every ω
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Data-Robust Design (An Example) Continue ...

Data Based Design of 3 Term Controllers – p. 60/109



Data-Robust Design (An Example) Continue ...

K∗ = −Pr(ω) + ωTPi(ω)

|P (jω)|2 := g(ω)
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Data-Robust Design (An Example) Continue ...

K∗ = −Pr(ω) + ωTPi(ω)

|P (jω)|2 := g(ω)

We overbound the g(ω) family:

gmax(ω) = max

8
<

:
g(ω) :

Pmax
r (ω), Pmin

r (ω), Pmax
i (ω), Pmin

i (ω),

|P (jω)|max, |P (jω)|min

9
=

;

gmin(ω) = min

8
<

:
g(ω) :

Pmax
r (ω), Pmin

r (ω), Pmax
i (ω), Pmin

i (ω),

|P (jω)|max, |P (jω)|min

9
=

;
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g(ω) graph: Kp = 5
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Interval Linear Programming

y − mx − c > 0, m ∈ [m−, m+], c ∈ [c−, c+].

m
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Interval Linear Programming

y − mx − c > 0, m ∈ [m−, m+], c ∈ [c−, c+].

m− m+

c−

c+

m

c
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Interval Linear Programming

y − mx − c > 0, m ∈ [m−, m+], c ∈ [c−, c+].

m− m+

c−

c+

m

c
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Interval Linear Programming

y − mx − c > 0, m ∈ [m−, m+], c ∈ [c−, c+].

m− m+

c−

c+

m

c

(m−, c
+)

(m+, c
+)

(m−, c
−)

(m+, c
−)

x

y

8
>>>>><

>>>>>:

y − m−x − c− > 0

y − m−x − c+ > 0

y − m+x − c− > 0

y − m+x − c+ > 0
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A set of linear programmings

bt =
−ωtPi(ωt) + ω2

t TPr(ωt)

|P (jωt)|2
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A set of linear programmings

bt =
−ωtPi(ωt) + ω2

t TPr(ωt)

|P (jωt)|2

8
>>>>><

>>>>>:

Ki − (ω−
1 )2Kd − b−1 > 0

Ki − (ω−
2 )2Kd − b−2 < 0

Ki − (ω−
3 )2Kd − b−3 > 0

Ki − (ω−
4 )2Kd − b−4 < 0
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A set of linear programmings

bt =
−ωtPi(ωt) + ω2

t TPr(ωt)

|P (jωt)|2

8
>>>>><

>>>>>:

Ki − (ω−
1 )2Kd − b−1 > 0

Ki − (ω−
2 )2Kd − b−2 < 0

Ki − (ω−
3 )2Kd − b−3 > 0

Ki − (ω−
4 )2Kd − b−4 < 0

8
>>>>><

>>>>>:

Ki − (ω−
1 )2Kd − b+1 > 0

Ki − (ω−
2 )2Kd − b+2 < 0

Ki − (ω−
3 )2Kd − b+3 > 0

Ki − (ω−
4 )2Kd − b+4 < 0
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8
>>>>><

>>>>>:

Ki − (ω+
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Ki − (ω+
2 )2Kd − b−2 < 0

Ki − (ω+
3 )2Kd − b−3 > 0

Ki − (ω+
4 )2Kd − b−4 < 0
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A set of linear programmings
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−ωtPi(ωt) + ω2
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>>>>><
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Stabilizing set for Kp = 5
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Digital Control Design
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Digital Control Design: Objectives

To synthesize the set of all stabilizing PID controllers from

experimental data of the discrete-time plant rather than from

mathematical models.
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Digital Control Design: Objectives

To synthesize the set of all stabilizing PID controllers from

experimental data of the discrete-time plant rather than from

mathematical models.

To synthesize the set of all stabilizing First Order controllers from

experimental data of the discrete-time plant rather than from

mathematical models.
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Preliminaries: Tchebyshev Decomposition

Consider a real polynomial in z,

P (z) = anzn + an−1z
n−1 + an−2z

n−2 + · · · + a1z + a0.
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Preliminaries: Tchebyshev Decomposition

Consider a real polynomial in z,

P (z) = anzn + an−1z
n−1 + an−2z

n−2 + · · · + a1z + a0.

Since

zk
∣

∣

z=ejθ = cos kθ + j sin kθ,
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Preliminaries: Tchebyshev Decomposition

Consider a real polynomial in z,

P (z) = anzn + an−1z
n−1 + an−2z

n−2 + · · · + a1z + a0.

Since

zk
∣

∣

z=ejθ = cos kθ + j sin kθ,

we have

P (ejθ) = (an cos nθ + · · · + a1 cos θ + a0) + j (an sinnθ + · · · + a1 sin θ)
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Preliminaries: Tchebyshev Decomposition

Consider a real polynomial in z,

P (z) = anzn + an−1z
n−1 + an−2z

n−2 + · · · + a1z + a0.

Since

zk
∣

∣

z=ejθ = cos kθ + j sin kθ,

we have

P (ejθ) = (an cos nθ + · · · + a1 cos θ + a0) + j (an sinnθ + · · · + a1 sin θ)

Let

u = − cos θ,

then we have

ejθ = −u + j
√

1 − u2.
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Tchebyshev Decomposition (continue ...)

We now have

P (ejθ)|u=− cos θ = R(u) + j
p

1 − u2T (u)

Data Based Design of 3 Term Controllers – p. 68/109



Tchebyshev Decomposition (continue ...)

We now have

P (ejθ)|u=− cos θ = R(u) + j
p

1 − u2T (u)

where

R(u) = ancn(u) + an−1cn−1(u) + · · · + a1c1(u) + a0

T (u) = ansn(u) + an−1sn−1(u) + · · · + a1s1(u)
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Tchebyshev Decomposition (continue ...)

We now have

P (ejθ)|u=− cos θ = R(u) + j
p

1 − u2T (u)

where

R(u) = ancn(u) + an−1cn−1(u) + · · · + a1c1(u) + a0

T (u) = ansn(u) + an−1sn−1(u) + · · · + a1s1(u)

k ck(u) sk(u)

1 −u 1

2 2u2 − 1 −2u

3 −4u3 + 3u 4u2 − 1

4 8u4 − 8u2 + 1 −8u3 + 4u

5 −16u5 + 20u3 − 5u 16u4 − 12u2 + 1
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Tchebyshev Decomposition (continue ...)

We now have

P (ejθ)|u=− cos θ = R(u) + j
p

1 − u2T (u)

where

R(u) = ancn(u) + an−1cn−1(u) + · · · + a1c1(u) + a0

T (u) = ansn(u) + an−1sn−1(u) + · · · + a1s1(u)

k ck(u) sk(u)

1 −u 1

2 2u2 − 1 −2u

3 −4u3 + 3u 4u2 − 1

4 8u4 − 8u2 + 1 −8u3 + 4u

5 −16u5 + 20u3 − 5u 16u4 − 12u2 + 1

sk(u) = − 1

K
· dck(u)

du
, ck+1(u) = −uck(u) −

`
1 − u2

´
sk(u), k = 1, 2, · · ·
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Preliminaries (continue ...)

Consider a real rational function

Q(z) =
P1(z)

P2(z)

where P1(z) and P2(z) are polynomials of real coefficients with degrees m and n,

respectively. Assume that P1(z) and P2(z) have no zeros on the unit circle.
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Preliminaries (continue ...)

Consider a real rational function

Q(z) =
P1(z)

P2(z)

where P1(z) and P2(z) are polynomials of real coefficients with degrees m and n,

respectively. Assume that P1(z) and P2(z) have no zeros on the unit circle.

Write

Q(z)|
z=−u+j

√
1−u2

= Rq(u) + j
p

1 − u2Tq(u)
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Preliminaries (continue ...)

Consider a real rational function

Q(z) =
P1(z)

P2(z)

where P1(z) and P2(z) are polynomials of real coefficients with degrees m and n,

respectively. Assume that P1(z) and P2(z) have no zeros on the unit circle.

Write

Q(z)|
z=−u+j

√
1−u2

= Rq(u) + j
p

1 − u2Tq(u)

where

Rq(u) =
R(u)

D(u)
, Tq(u) =

T (u)

D(u)
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Preliminaries (continue ...)

Consider a real rational function

Q(z) =
P1(z)

P2(z)

where P1(z) and P2(z) are polynomials of real coefficients with degrees m and n,

respectively. Assume that P1(z) and P2(z) have no zeros on the unit circle.

Write

Q(z)|
z=−u+j

√
1−u2

= Rq(u) + j
p

1 − u2Tq(u)

where

Rq(u) =
R(u)

D(u)
, Tq(u) =

T (u)

D(u)

R(u) = R1(u)R2(u) +
`
1 − u2

´
T1(u)T2(u)

T (u) = T1(u)R2(u) − R1(u)T2(u)

D(u) = R2
2(u) +

`
1 − u2

´
T 2
2 (u)
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Preliminaries (continue ...)

Recall

Q(z)|z=−u+j
√

1−u2 =
R(u)

D(u)
+ j

√

1 − u2
T (u)

D(u)
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Preliminaries (continue ...)

Recall

Q(z)|z=−u+j
√

1−u2 =
R(u)

D(u)
+ j

√

1 − u2
T (u)

D(u)

Since

D(u) = R2
2(u) +

(

1 − u2
)

T 2
2 (u) > 0 for all u ∈ [−1, 1],

the zeros of Tq(u) are identical to those of T (u).
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Preliminaries (continue ...)

Recall

Q(z)|z=−u+j
√

1−u2 =
R(u)

D(u)
+ j

√

1 − u2
T (u)

D(u)

Since

D(u) = R2
2(u) +

(

1 − u2
)

T 2
2 (u) > 0 for all u ∈ [−1, 1],

the zeros of Tq(u) are identical to those of T (u).

Let t1, · · · , tk denote the real distinct zeros of T (u) of odd multiplicity

ordered as

−1 < t1 < t2 < · · · < tk < +1.
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Schur Signature Lemma

Let Q(z) be a real rational function with iz zeros and ip poles,

respectively, inside the unit circle C and no zeros/poles on the unit

circle and

Q(z)|z=−u+
√

1−u2 = R(u) + j
√

1 − u2T (u).
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Schur Signature Lemma

Let Q(z) be a real rational function with iz zeros and ip poles,

respectively, inside the unit circle C and no zeros/poles on the unit

circle and

Q(z)|z=−u+
√

1−u2 = R(u) + j
√

1 − u2T (u).

Then the net change in phase of Q(ejθ) as θ runs from 0 to π:

∆π
0∠Q(ejθ) = π (iz − ip) = πσ[Q(z)]
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Schur Signature Lemma

Let Q(z) be a real rational function with iz zeros and ip poles,

respectively, inside the unit circle C and no zeros/poles on the unit

circle and

Q(z)|z=−u+
√

1−u2 = R(u) + j
√

1 − u2T (u).

Then the net change in phase of Q(ejθ) as θ runs from 0 to π:

∆π
0∠Q(ejθ) = π (iz − ip) = πσ[Q(z)]

The signature is

σ[Q(z)] = iz − ip

=
1

2
sgn

h

T (p)(−1)
i
0

@sgn[R(−1)] + 2
kX

j=1

(−1)jsgn[R(tj)] + (−1)k+1sgn[R(+1)]

1

A .

Data Based Design of 3 Term Controllers – p. 71/109



Assumption

The plant is stabilizable (mathematically, N(z) and D(z) are

coprime). where

P (z) =
N(z)

D(z)
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The plant has no poles on the unit circle.
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coprime). where
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D(z)

The plant has no poles on the unit circle.
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Assumption

The plant is stabilizable (mathematically, N(z) and D(z) are

coprime). where

P (z) =
N(z)

D(z)

The plant has no poles on the unit circle.

Only available information:

P (ejθ) for θ ∈ [0, 2π]

Number of unstable poles of the plant, op
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Assumption

The plant is stabilizable (mathematically, N(z) and D(z) are

coprime). where

P (z) =
N(z)

D(z)

The plant has no poles on the unit circle.

Only available information:

P (ejθ) for θ ∈ [0, 2π]

Number of unstable poles of the plant, op

The relative degree r
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PID Controller Design for Discrete-time Systems

+

−

C(z) P(z)
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PID Controller Design for Discrete-time Systems

+

−

C(z) P(z)

Let the PID controller be of the form

C(z) = KP +
KITz

z − 1
+

KD(z − 1)

Tz
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PID Controller Design for Discrete-time Systems

+

−

C(z) P(z)

Let the PID controller be of the form

C(z) = KP +
KITz

z − 1
+

KD(z − 1)

Tz

equivalently,

C(z) =
K2z2 + K1z + K0

z(z − 1)
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PID Controller Design for Discrete-time Systems

+

−

C(z) P(z)

Let the PID controller be of the form

C(z) = KP +
KITz

z − 1
+

KD(z − 1)

Tz

equivalently,

C(z) =
K2z2 + K1z + K0

z(z − 1)

where

KP = −K1 − 2K0, KI =
K0 + K1 + K2

T
, KD = K0T
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PID Controller Design (continue ...)

The closed-loop characteristic polynomial is

δ(z) := z(z − 1)D(z) +
`
K2z2 + K1z + K0

´
N(z).
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PID Controller Design (continue ...)

The closed-loop characteristic polynomial is

δ(z) := z(z − 1)D(z) +
`
K2z2 + K1z + K0

´
N(z).

Closed-loop stability requires σ(δ) = n + 2.
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PID Controller Design (continue ...)

The closed-loop characteristic polynomial is

δ(z) := z(z − 1)D(z) +
`
K2z2 + K1z + K0

´
N(z).

Closed-loop stability requires σ(δ) = n + 2.

Consider

Π(z) =
δ(z)

D(z)
= z(z − 1) +

`
K2z2 + K1z + K0

´
P (z)
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PID Controller Design (continue ...)

The closed-loop characteristic polynomial is

δ(z) := z(z − 1)D(z) +
`
K2z2 + K1z + K0

´
N(z).

Closed-loop stability requires σ(δ) = n + 2.

Consider

Π(z) =
δ(z)

D(z)
= z(z − 1) +

`
K2z2 + K1z + K0

´
P (z)

Consequently, the stability requires that

σ(Π) = n + 2 − ip

where ip is the number of poles of the plant located inside unit circle.
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Stability Condition with PID Controllers

Let P (z) be the plant with relative degree r. Let the PID controller be

C(z) =
K2z2 + K1z + K0

z(z − 1)
.
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Stability Condition with PID Controllers

Let P (z) be the plant with relative degree r. Let the PID controller be

C(z) =
K2z2 + K1z + K0

z(z − 1)
.

Then the closed-loop system is stable if and only if

σ(ν) = r + oz + 1

where

ν(z) = z−1P (z−1)Π(z)

Π(z) = z(z − 1) +
`
K2z2 + K1z + K0

´
P (z)

and oz is the number of non-minimum phase zeros of P (z).
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PID Controller Design (continue ...)

Now

ν(z)|z=−u+jv = z−1P (z−1)Π(z)
˛
˛
z=−u+jv

=
ˆ
z−1P (z−1) +

`
K0z−1 + K1 + K0z

´
P (z)P (z−1)

˜

z=−u+jv

= (−u − 1 + jv) (Rp(u) − jvTp(u)) + [K0(−u − jv) + K1 + K2(−u + jv)] m2(u)

where

v =
p

1 − u2, m(u) = |P (z)|z=−u+jv.
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PID Controller Design (continue ...)

Now

ν(z)|z=−u+jv = z−1P (z−1)Π(z)
˛
˛
z=−u+jv

=
ˆ
z−1P (z−1) +

`
K0z−1 + K1 + K0z

´
P (z)P (z−1)

˜

z=−u+jv

= (−u − 1 + jv) (Rp(u) − jvTp(u)) + [K0(−u − jv) + K1 + K2(−u + jv)] m2(u)

where

v =
p

1 − u2, m(u) = |P (z)|z=−u+jv.

Then

ν(z) = Rν(u, K0, K1, K3) + jvTν(u, K3)

where

K3 := K2 − K0
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PID Controller Design (continue ...)

Rν(u, K0, K1, K3) = −(u − 1)Rp(u) − (1 − u2)Tp(u) + K1m2(u)

−u(2K0 + K3)m2(u)

Tν(u, K3) = Rp(u) − (u + 1)Tp(u) + K3m2(u).

Note that

P (z)|
z=−u+j

√
1−u2

= Rp(u) + j
p

1 − u2Tp(u)
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PID Controller Design (continue ...)

Rν(u, K0, K1, K3) = −(u − 1)Rp(u) − (1 − u2)Tp(u) + K1m2(u)

−u(2K0 + K3)m2(u)

Tν(u, K3) = Rp(u) − (u + 1)Tp(u) + K3m2(u).

Note that

P (z)|
z=−u+j

√
1−u2

= Rp(u) + j
p

1 − u2Tp(u)

Rp(u) and TP (u) can be obtained directly from the experimental data

P (ejθ)|u=− cos θ ,
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PID Controller Design (continue ...)

Rν(u, K0, K1, K3) = −(u − 1)Rp(u) − (1 − u2)Tp(u) + K1m2(u)

−u(2K0 + K3)m2(u)

Tν(u, K3) = Rp(u) − (u + 1)Tp(u) + K3m2(u).

Note that

P (z)|
z=−u+j

√
1−u2

= Rp(u) + j
p

1 − u2Tp(u)

Rp(u) and TP (u) can be obtained directly from the experimental data

P (ejθ)|u=− cos θ ,

Rν(u, K0, K1, K3) and Tν(u, K3) can also be obtained from P (ejθ)
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Algorithm: PID Controller Design

For fixed K3 = K∗
3 , solve

K∗
3 =

−Rp(u) + (u + 1)Tp(u)

m2(u)
= g(u)

determine the roots u1, u2, · · ·

u0 = −1 < u1 < u2 < · · · < ul < ul+1 = +1
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Algorithm: PID Controller Design

For fixed K3 = K∗
3 , solve

K∗
3 =

−Rp(u) + (u + 1)Tp(u)

m2(u)
= g(u)

determine the roots u1, u2, · · ·

u0 = −1 < u1 < u2 < · · · < ul < ul+1 = +1

Develop linear inequalities corresponding to stability as follows. Let

Ij =
n

ij0, ij1, · · · , ij
l
, ij

l+1

o

denote a string where iji ∈ {0, 1,−1} such that

ij0 − 2ij1 + 2ij2 − · · · + (−1)l+1ij
l+1 = r + oz + 1.
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Algorithm: PID Controller Design (continue ...)

For each string Ij satisfying the above, we have the set of inequalities

sgn [Rν (ut, K0, K1, K∗
3 )] ijt > 0

which is a set of linear inequalities in K0, K1 space for fixed K∗
3 .
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Algorithm: PID Controller Design (continue ...)

For each string Ij satisfying the above, we have the set of inequalities

sgn [Rν (ut, K0, K1, K∗
3 )] ijt > 0

which is a set of linear inequalities in K0, K1 space for fixed K∗
3 .

By constructing these inequalities for each string satisfying the above, we obtain

the stabilizing set for K3 = K∗
3 .
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Algorithm: PID Controller Design (continue ...)

For each string Ij satisfying the above, we have the set of inequalities

sgn [Rν (ut, K0, K1, K∗
3 )] ijt > 0

which is a set of linear inequalities in K0, K1 space for fixed K∗
3 .

By constructing these inequalities for each string satisfying the above, we obtain

the stabilizing set for K3 = K∗
3 .

By sweeping over K3 we can generate the complete set.
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Algorithm: PID Controller Design (continue ...)

For each string Ij satisfying the above, we have the set of inequalities

sgn [Rν (ut, K0, K1, K∗
3 )] ijt > 0

which is a set of linear inequalities in K0, K1 space for fixed K∗
3 .

By constructing these inequalities for each string satisfying the above, we obtain

the stabilizing set for K3 = K∗
3 .

By sweeping over K3 we can generate the complete set.

The range of K3 to be swept is determined by the requirement that g(u) should

have oz+1
2

roots at least.
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An Example: PID Design

Available Information:

Frequency domain data

P(eωT ) :=



P (eωT ), ω =
2π

T
sampled every T = 0.01

ff

.
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An Example: PID Design

Available Information:

Frequency domain data

P(eωT ) :=



P (eωT ), ω =
2π

T
sampled every T = 0.01

ff

.

The plant is stable. In other words, the number of unstable poles of the plant is 0,

that is, op = 0.
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An Example: PID Design

Available Information:

Frequency domain data

P(eωT ) :=



P (eωT ), ω =
2π

T
sampled every T = 0.01

ff

.

The plant is stable. In other words, the number of unstable poles of the plant is 0,

that is, op = 0.

The relative degree of the plant is 2, that is, r = 2.
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An Example: PID Design (continue ...)

The Nyquist plot of the plant P (z):
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An Example: PID Design (continue ...)

Net phase:

∆π
0 ∠P (ejθ) = −π [r + (oz − op)] := −2π. ⇒ oz = 2− r +op = 2−2+0 = 0.
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An Example: PID Design (continue ...)

Net phase:

∆π
0 ∠P (ejθ) = −π [r + (oz − op)] := −2π. ⇒ oz = 2− r +op = 2−2+0 = 0.

The stability requirement is equivalent to

σ [ν(z)] = 2 + 0 + 1 = 3.
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An Example: PID Design (continue ...)

Net phase:

∆π
0 ∠P (ejθ) = −π [r + (oz − op)] := −2π. ⇒ oz = 2− r +op = 2−2+0 = 0.

The stability requirement is equivalent to

σ [ν(z)] = 2 + 0 + 1 = 3.

Applying this to the signature lemma,

1

2
sgn[T (−1)]

 

sgn[R(−1)] − 2sgn[R(t1)] + 2sgn[R(t2)] − · · · sgn[R(1)]

!

:= 3

where ti are the zeros of g(u) in g(u) for fixed K3.
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An Example: PID Design (continue ...)

It is easy to see that at least two zeros ti are required and also that the only

feasible string of sign sequences is:

sgn of T (−1) R(−1) R(t1) R(t2) R(1)

1 1 −1 1 −1
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An Example: PID Design (continue ...)

It is easy to see that at least two zeros ti are required and also that the only

feasible string of sign sequences is:

sgn of T (−1) R(−1) R(t1) R(t2) R(1)

1 1 −1 1 −1

The feasible range of K3 values is that corresponding to the requirement of two

zeros in T (u).
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An Example: PID Design (continue ...)

It is easy to see that at least two zeros ti are required and also that the only

feasible string of sign sequences is:

sgn of T (−1) R(−1) R(t1) R(t2) R(1)

1 1 −1 1 −1

The feasible range of K3 values is that corresponding to the requirement of two

zeros in T (u).

Plot the right hand side of g(u):

g(u) =
1

|Pc(u)|2

 

−Pr(u) − (1 + u)Pi(u)

!

= K3

where

P (ejωT )|ωT=θ = P (ejθ)|u=− cos θ = Pr(u) + j
p

1 − u2Pi(u).
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An Example: PID Design (continue ...)
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An Example: PID Design (continue ...)

At K3 = 1.3, it is found from the graph that

u = −0.4736 := t1, u = −0.0264 := t2.
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An Example: PID Design (continue ...)

At K3 = 1.3, it is found from the graph that

u = −0.4736 := t1, u = −0.0264 := t2.

Then the set of linear inequalities corresponding to K3 = 1.3 is

T (−1) = 1

R(−1) = −2.3111 + 1.7778K1 + 3.5556K2 > 0

R(−0.4736) = −0.6939 + 0.7473K1 + 0.7078K2 < 0

R(−0.0264) = 0.7226 + 0.6403K1 + 0.0338K2 > 0

R(1) = −0.3556 + 1.7778K1 − 3.5556K2 < 0
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An Example: PID Design (continue ...)

By sweeping K3 over (−0.7, 1.4), we have the stabilizing PID parameter regions shown:
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1st Order Controllers for Discrete-time Systems

Consider the frequency response of the discrete-time plant P :

P (z)|z=−u+jv = Rp(u) + jvTp(u).
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1st Order Controllers for Discrete-time Systems

Consider the frequency response of the discrete-time plant P :

P (z)|z=−u+jv = Rp(u) + jvTp(u).

Note that RP (u) and Tp(u) for −1 ≤ u ≤ 1 are immediately available from the

given frequency response data points provided by P (ejθ) for θ ∈ [0, π].
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1st Order Controllers for Discrete-time Systems

Consider the frequency response of the discrete-time plant P :

P (z)|z=−u+jv = Rp(u) + jvTp(u).

Note that RP (u) and Tp(u) for −1 ≤ u ≤ 1 are immediately available from the

given frequency response data points provided by P (ejθ) for θ ∈ [0, π].

Consider the real rational function

F (z) = (z + x3) + (zx1 + x2) P (z).
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Stability Condition with First Order Controllers

Let P (z) be the plant with the number of unstable poles being op. Let the first order

controller be

C(z) =
x1z + x2

z + x3
.
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Stability Condition with First Order Controllers

Let P (z) be the plant with the number of unstable poles being op. Let the first order

controller be

C(z) =
x1z + x2

z + x3
.

Then the closed-loop system is stable if and only if

σ(Π) = op + 1

where

Π(z) = (z + x3) + (zx1 + x2) P (z)

and op is the number of non-minimum phase poles of P (z).
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1st Order Controllers Design

Consider

Π(z) = (z + x3) + (zx1 + x2) P (z)

and

Π(z)|z=−u+jv

= (−u + x3 + jv) +

 

−ux1 + x2 + jvx1

! 

Rp(u) + jvTp(u)

!

= (x3 − u) + Rp(u)x2 −
 

uRp(u) + v2Tp(u)

!

x1

+jv

" 

Rp(u) − uTp(u)

!

x1 + Tp(u)x2 + 1

#

.
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Stability Conditions

For complex root crossing, we now have the expression of the curve in (x1, x2) space for

every fixed x3.

2

6
6
6
6
4

−
 

uRp(u) + v2Tp(u)

!

Rp(u)

v

 

Rp(u) − uTp(u)

!

vTp(u)

3

7
7
7
7
5

| {z }

A(u)

2

4
x1(u)

x2(u)

3

5 =

2

4
− (x3 − u)

−v

3

5 .
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Stability Conditions

For complex root crossing, we now have the expression of the curve in (x1, x2) space for

every fixed x3.

2

6
6
6
6
4

−
 

uRp(u) + v2Tp(u)

!

Rp(u)

v

 

Rp(u) − uTp(u)

!

vTp(u)

3

7
7
7
7
5

| {z }

A(u)

2

4
x1(u)

x2(u)

3

5 =

2

4
− (x3 − u)

−v

3

5 .

Since

det[A(u)] = −
`
R2

p(u) + v2T 2
p (u)

´2
v = −v

˛
˛
˛P (ejθ)

˛
˛
˛ ,
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Stability Conditions

For complex root crossing, we now have the expression of the curve in (x1, x2) space for

every fixed x3.

2

6
6
6
6
4

−
 

uRp(u) + v2Tp(u)

!

Rp(u)

v

 

Rp(u) − uTp(u)

!

vTp(u)

3

7
7
7
7
5

| {z }

A(u)

2

4
x1(u)

x2(u)

3

5 =

2

4
− (x3 − u)

−v

3

5 .

Since

det[A(u)] = −
`
R2

p(u) + v2T 2
p (u)

´2
v = −v

˛
˛
˛P (ejθ)

˛
˛
˛ ,

the solution of the above is

2

4
x1(u)

x2(u)

3

5 = − 1
˛
˛P (ejθ)

˛
˛2

2

4
(u − x3) Tp(u) + Rp(u)

(1 − ux3) Tp(u) + x3Rp(u)

3

5 .
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Stability Conditions (continue ...)

The two straight lines representing the real root crossing can be obtained by letting

u = −1 and u = 1, equivalently letting θ = 0 and θ = π.

(x3 − 1) + P (e0)(x2 − x1) = 0

(x3 − 1) + P (eπ)(x2 − x1) = 0.
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An Example: First Order Controller Design

Available Information:

Frequency domain data

P(eωT ) :=
n

P (eωT ), ω =
π

T
sampled every T = 0.01

o

.
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An Example: First Order Controller Design

Available Information:

Frequency domain data

P(eωT ) :=
n

P (eωT ), ω =
π

T
sampled every T = 0.01

o

.

The plant is stable, i.e., the number of poles outside the unit circle is 0, that is,

op = 0.
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An Example: First Order Controller Design (continue ...)

At x = 0.75, the following region is obtained.
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An Example: First Order Controller Design (continue ...)

At x = 0.75, the following region is obtained.
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Each separated region represents a set of controller parameters that gives a fixed

number of unstable poles of the closed-loop system.
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An Example: First Order Controller Design (continue ...)

At x = 0.75, the following region is obtained.
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x
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Each separated region represents a set of controller parameters that gives a fixed

number of unstable poles of the closed-loop system.

To identify the stabilizing region, we arbitrarily select a point from each region and

plot the corresponding Nyquist plot
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An Example: First Order Controller Design (continue ...)

At x = 0.75, the following region is obtained.
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x
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Region 1

Region 2

Region 3
Region 4

Each separated region represents a set of controller parameters that gives a fixed

number of unstable poles of the closed-loop system.

To identify the stabilizing region, we arbitrarily select a point from each region and

plot the corresponding Nyquist plot
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An Example: First Order Controller Design (continue ...)

The following figure shows the Nyquist plots with selected controllers from the four

specified regions.
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An Example: First Order Controller Design (continue ...)

The Nyquist plot with a controller from Region 1 shows that the encirclement

around −1 point is 2π, i.e., N = 2.
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An Example: First Order Controller Design (continue ...)

The Nyquist plot with a controller from Region 1 shows that the encirclement

around −1 point is 2π, i.e., N = 2.

Since op = 0, the corresponding closed-loop system will have 2 poles outside the

unit circle.
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An Example: First Order Controller Design (continue ...)

The Nyquist plot with a controller from Region 1 shows that the encirclement

around −1 point is 2π, i.e., N = 2.

Since op = 0, the corresponding closed-loop system will have 2 poles outside the

unit circle.

Similarly, corresponding closed-loops system with controllers from Region 3 and 4

will have 2 and 3 poles outside the unit circle, respectively.
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An Example: First Order Controller Design (continue ...)

The Nyquist plot with a controller from Region 1 shows that the encirclement

around −1 point is 2π, i.e., N = 2.

Since op = 0, the corresponding closed-loop system will have 2 poles outside the

unit circle.

Similarly, corresponding closed-loops system with controllers from Region 3 and 4

will have 2 and 3 poles outside the unit circle, respectively.

This test led us to the conclusion that the region 2 is the only stabilizing controller

parameter region.
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An Example: First Order Controller Design (continue ...)

By sweeping over x3, we have the entire first order stabilizing controllers for the given

plant.
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Data Measurement by Impulse Response

Typically data is obtained from the measurement by a sinusoidal input.
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Data Measurement by Impulse Response

Typically data is obtained from the measurement by a sinusoidal input.

Alternative input - Impulse ⇒ Output - Markov parameters

y[k] = [m0, m1, m2, · · · , mk, · · ·]
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Data Measurement by Impulse Response

Typically data is obtained from the measurement by a sinusoidal input.

Alternative input - Impulse ⇒ Output - Markov parameters

y[k] = [m0, m1, m2, · · · , mk, · · ·]

Y (z) = m0 + m1z−1 + · · · + mkz−k + · · ·
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Data Measurement by Impulse Response

Typically data is obtained from the measurement by a sinusoidal input.

Alternative input - Impulse ⇒ Output - Markov parameters

y[k] = [m0, m1, m2, · · · , mk, · · ·]

Y (z) = m0 + m1z−1 + · · · + mkz−k + · · ·

By truncating the terms, we have approximation of the frequency response of the

system.

P (z)|z=−u+v = Yn(z)|z=−u+v

where n is the number of the terms taken from Y (z).
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Example: Data Measurement by Impulse Input

Markov parameter obtained

y[k] = [0, 0, 1, 0, 0.25, 0, 0.0625, 0, 0.015625, 0, 0.00390625, · · ·]
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Example: Data Measurement by Impulse Input

Markov parameter obtained

y[k] = [0, 0, 1, 0, 0.25, 0, 0.0625, 0, 0.015625, 0, 0.00390625, · · ·]

Stabilizing region with K3 = 1.2 for n = 3, 5, 7, 10, 20
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Data Measurement by Step Input

Alternative input - Step Input ⇒ Step Response parameters

ys[k] = [y0, y1, y2, · · · , yk, · · ·]
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Data Measurement by Step Input

Alternative input - Step Input ⇒ Step Response parameters

ys[k] = [y0, y1, y2, · · · , yk, · · ·]

H(z)|z=−u+v = Ys(z)

»
z − 1

z

–˛
˛
˛
˛
z=−u+v

=
“

y0 + y1z−1 + y2z−2 + · · · + ykz−k + · · ·
” `

1 − z−1
´
|z=−u+v

= y0 + (y1 − y0)z−1 + (y2 − y1)z−2 + · · · + (yk − yk−1)z−k + · · ·
= m0 + m1z−1 + m2z−2 + · · · + mkz−k + · · ·

where m0, m1, · · · , mk, · · · are the Markov parameters.
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Data Measurement by Step Input

Alternative input - Step Input ⇒ Step Response parameters

ys[k] = [y0, y1, y2, · · · , yk, · · ·]

H(z)|z=−u+v = Ys(z)

»
z − 1

z

–˛
˛
˛
˛
z=−u+v

=
“

y0 + y1z−1 + y2z−2 + · · · + ykz−k + · · ·
” `

1 − z−1
´
|z=−u+v

= y0 + (y1 − y0)z−1 + (y2 − y1)z−2 + · · · + (yk − yk−1)z−k + · · ·
= m0 + m1z−1 + m2z−2 + · · · + mkz−k + · · ·

where m0, m1, · · · , mk, · · · are the Markov parameters.

By truncating the terms, we have approximation of the frequency response of the

system.

P (z)|z=−u+v = Hn(z)|z=−u+v

where n is the number of the terms taken from H(z).
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Example: Data Measurement by Step Input

The step response and the Markov parameters computed

ys[k] = [0, 0, 1, 1, 1.25, 1.25, 1.3125, 1.3125, 1.328125, 1.328125, 1.33203125, · ·
m(k) = [0, 0, 1, 0, 0.25, 0, 0.0625, 0.015625, 0, 0.00390625, · · ·]
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Example: Data Measurement by Step Input

The step response and the Markov parameters computed

ys[k] = [0, 0, 1, 1, 1.25, 1.25, 1.3125, 1.3125, 1.328125, 1.328125, 1.33203125, · ·
m(k) = [0, 0, 1, 0, 0.25, 0, 0.0625, 0.015625, 0, 0.00390625, · · ·]

Stabilizing resion with K3 = 1.2 for n = 5
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Computer Aided Design using Labview

The algorithm for the design of a PID Controller from the frequency response data

of the system has programmed in LabVIEW due to its user-friendly graphical

environment.

Data Based Design of 3 Term Controllers – p. 101/109
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The algorithm for the design of a PID Controller from the frequency response data

of the system has programmed in LabVIEW due to its user-friendly graphical

environment.

The Virtual Instrument (VI) in Labview have a front panel that is displayed to the

user and a block diagram, where the computations are performed.
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of the system has programmed in LabVIEW due to its user-friendly graphical

environment.

The Virtual Instrument (VI) in Labview have a front panel that is displayed to the

user and a block diagram, where the computations are performed.

The inputs to the program are the frequency response data and the number of

RHP poles of the system.
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The algorithm for the design of a PID Controller from the frequency response data

of the system has programmed in LabVIEW due to its user-friendly graphical

environment.

The Virtual Instrument (VI) in Labview have a front panel that is displayed to the

user and a block diagram, where the computations are performed.

The inputs to the program are the frequency response data and the number of

RHP poles of the system.

Given these inputs, the entire range of Kp that can stabilize the system is

displayed,
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Computer Aided Design using Labview

The algorithm for the design of a PID Controller from the frequency response data

of the system has programmed in LabVIEW due to its user-friendly graphical

environment.

The Virtual Instrument (VI) in Labview have a front panel that is displayed to the

user and a block diagram, where the computations are performed.

The inputs to the program are the frequency response data and the number of

RHP poles of the system.

Given these inputs, the entire range of Kp that can stabilize the system is

displayed,

and as the user scrolls through the stabilizing range of Kp, entire stabilizing

ranges of Ki and Kd are displayed.
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CAD using LABVIEW (continue...)

Left: The file containing the frequency response data from a stable system

(number of right hand plane poles equals zero) is fed into the program through the

file path box located at the top.

Right: The front panel shows stabilizing sets of Kp, Ki and Kd.
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CAD using LABVIEW (continue...)

Left: T is set to a very small number.
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CAD using LABVIEW (continue...)

Left: T is set to a very small number.

g(ω) versus frequency generated from the inputs is used to compute ω values

associated with a particular value of Kp.
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CAD using LABVIEW (continue...)

Left: T is set to a very small number.

g(ω) versus frequency generated from the inputs is used to compute ω values

associated with a particular value of Kp.

Using the values of ω obtained above, linear equations are solved by the

program to compute stabilizing sets of Ki and Kd for a fixed Kp.
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CAD using LABVIEW (continue...)

Left: T is set to a very small number.

g(ω) versus frequency generated from the inputs is used to compute ω values

associated with a particular value of Kp.

Using the values of ω obtained above, linear equations are solved by the

program to compute stabilizing sets of Ki and Kd for a fixed Kp.

As the selected Kp is changed, the Ki, Kd graph changes dynamically to

show the new stabilizing ranges of Ki and Kd for the selected Kp.
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CAD using LABVIEW (continue...)

Left: T is set to a very small number.

g(ω) versus frequency generated from the inputs is used to compute ω values

associated with a particular value of Kp.

Using the values of ω obtained above, linear equations are solved by the

program to compute stabilizing sets of Ki and Kd for a fixed Kp.

As the selected Kp is changed, the Ki, Kd graph changes dynamically to

show the new stabilizing ranges of Ki and Kd for the selected Kp.

Right: Gives the stabilizing range of Ki and Kd for Kp = 1.
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CAD using LABVIEW: 3D graph of stabilizing sets

The stabilizing set of Kp, Ki and Kd for the given system is shown.
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CAD using LABVIEW (continue...)

Front Panel of VI showing performance indices for specific Kp, Ki and Kd.
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CAD using LABVIEW (continue...)

Front Panel of VI that satisfies multiple performance index specifications
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CAD using LABVIEW (continue...)

Front Panel of VI that satisfies multiple performance index specifications

The generated set of points satisfies multiple performance indices simultaneously.

Performance indices used in the program: Gain Margin= 3db, Phase

Margin= 45o, Overshoot= 30% .
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Concluding Remarks

We have shown that the complete set of PID/ First Order

stabilizing controllers achieving stability and various meaningful

performance specifications can be found from the frequency

response of the plant and knowledge of the number of RHP plant

poles.
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We have shown that the complete set of PID/ First Order

stabilizing controllers achieving stability and various meaningful

performance specifications can be found from the frequency

response of the plant and knowledge of the number of RHP plant

poles.

Note that

that this calculation can be done by a nested linear

programming procedure and
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Concluding Remarks

We have shown that the complete set of PID/ First Order

stabilizing controllers achieving stability and various meaningful

performance specifications can be found from the frequency

response of the plant and knowledge of the number of RHP plant

poles.

Note that

that this calculation can be done by a nested linear

programming procedure and

that only knowledge of the frequency response and number of

RHP poles is sufficient.
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Concluding Remarks (continue...)

It is not clear whether these advantages can be extended to other

types of controllers and this is an area worth investigating since

determining such stabilizing and performance sets is an important

step toward lower order, robust and high performance controller

design
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types of controllers and this is an area worth investigating since

determining such stabilizing and performance sets is an important

step toward lower order, robust and high performance controller

design

It is also worth investigating how this procedure can be modified

to accommodate incomplete or finite frequency data.
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Concluding Remarks (continue...)

It is not clear whether these advantages can be extended to other

types of controllers and this is an area worth investigating since

determining such stabilizing and performance sets is an important

step toward lower order, robust and high performance controller

design

It is also worth investigating how this procedure can be modified

to accommodate incomplete or finite frequency data.

An important area of research is MIMO PID control and the

extension of the results given here to the multi-variable case.
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End of Presentation

Thank You
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The short course lectures are based on materials contained 
in the following references:

• A. Datta, M.T. Ho, and S.P. Bhattacharyya, Structure and Synthesis of PID Controllers, Advances in
Industrial Control, Springer, 2000.

• G.J. Silva, A. Datta, and S.P. Bhattacharyya, PID Controllers for Time-Delay Systems, Birkhäuser, 2004.

• S.P. Bhattacharyya, A. Datta, and L.H. Keel, Linear Control Theorey: Structure, Robustness, and
Optimization, CRC Press, 2009.

• L.H. Keel, Y.C. Kim, and S.P. Bhattacharyya, Tutorial Workshop on Advances in Three Term Control,
17th IFAC World Congress, Seoul, Korea, July 6 – 11, 2008.

• L.H. Keel, J.I. Rego, and S.P. Bhattacharyya, “A new approach to digital PID controller design,” IEEE
Transactions on Automatic Control, Vol. 48, No. 4, pp. 687 - 692, April 2003.
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Transactions on Automatic Control, Vol. 51, No. 8, pp. 1343 - 1347, August, 2006.

• L.H. Keel, S. Mitra, and S.P. Bhattacharyya, “Data driven synthesis of three term digital controllers,”
SICE Journal of Control, Measurement, and System Integration, Vol. 1, No. 2, pp. 102 - 110, March
2008.
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