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e The characteristic polynomial of the closed loop system

[I(z) := Do(2)D(2) + No(2)N(2)
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TCHEBYSHEV REPRESENTATION AND
ROOT CLUSTERING

Tchebyshev representation of real polynomials

e Consider a real polynomial P(2) = a,2" + a,_12" 4+ -+ +a12 + ag

e The image of P(z) evaluated on the circle C, of radius p,
centered at the origin is:

DB = pet il R <ol

e As the coefficients a; are real P (pe’?) and P (pe %) are conjugate
complex numbers, and so it suffices to determine the image of
the upper half of the circle:

{R(Z).5 a=1pe’? S i 0 <m}
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e Since sz:pejg = p"(cos kf + jsin k0),

P(peje) = (app"cosnd + -+ ajpcost + ag) +j (a,p" sinnh + - - - + a;psin @)

N 4 \
d Vit b LV

R(p,9) I(p,0)
= R(p,0) + jI(p,0).

o Consider (pe’?)* = p* cos kO + jp* sin k6

e Write u = — cosf and define the generalized Tchebyshev polynomials as follows:

cr(u, p) = Pkck(u), sk(u, p) = pk’sk(u), k=0,1,2---
and note that

Tdilep
sp(u,p) = i [kcgu p)]’ k=12 ---

crhir(u,p) = —puc(u,p) — (1 —u’) psi(u,p), k=12,
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e The generalized Tchebyshev polynomials are for £k =1, - - - 5:

k Ck(uv p) Sk(uv IO)

1 —pU 0

2 p* (2u? — 1) —2p%*u

3 p? (—4u? + 3u) p° (4u* — 1)

4 pt (8ut — 8u? + 1) p* (—8u? + 4u)

5 p° (=16u® +20u> — 5u)  p° (16u* — 1202 + 1)

e With this notation, P (pe??) = R(u, p) + jv/'1 — w*T(u, p) =: Po(u, p)

where

R(u,p) = ancn(u,p) + an_1ch-1(u, p) + - -+ arci(u, p) + ao
T(U,p) T ansn( 7p>+an—15n—1<u7p)+'”+a’181(u7p)'

e R(u,p) and T'(u, p) are polynomials in « and p.

e The complex plane image of P(z) as z traverses the upper half of the
circle C, can be obtained by evaluating P.(u, p) as u runs from —1 to +1.
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LEMMA
For a fixed p > 0,

(a) if P(z) has no roots on the circle of radius p > 0,
(R (u,p),T (u,p)) have no common roots for u € [—1,1] and R (£1, p) # 0.

(b) if P(z) has 2m roots at z = —p(z = +p),
then R (u, p) and T (u, p) have m roots each at u = +1 (u = —1).

(c) if P(2) has 2m — 1 roots at z = —p (2 = +p), then R (u, p) and T (u, p)
have m and m — 1 roots, respectively at v = +1 (u = —1).

(d) if P(2) has ¢; pairs of complex roots at z = —pu; £ jp\/1 — u?, for u; # +1,
then R (u,p) and T (u, p) each have g; real roots at u = u;.
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Interlacing Conditions for Root Clustering and Schur Stability

THEOREM
- P(z) has all its zeros strictly within C, if and only if

(a) R(u,p) has n real distinct zeros r;, i = 1,2,--- ;nin (—1,1).
(b) T'(u, p) has n — 1 real distinct zeros t;, j =1,2,--- ,n—11in (—1,1).

(c) The zeros r; and t; interlace:

L R iy K g R AL e L i ]
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Tchebyshev Representation of Rational Functions

o et
B@.— pinizz =Rl ) +ivi —2T(w, )i =1,2

 P(2)P (27
Q(z)lz:—pu—l—jpm " PQ(Z)PQ (Z_l)

R(u,p)
R r(Rl(% p)falu, p) + (1 % u2) T (u, P)Tz(u,P)y
R2(u, p) + (1 —u?) T2(u, p)

e R(u,p), T'(u, p) are rational functions
of the real variable v which runs from -1 to +1.
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ROOT COUNTING FORMULAS

LEMMA

Let the real polynomial P(z) have i roots in the interior of the circle C,

and no roots on the circle. Then:

AGlop(0)] = mi

LEMMA
Let Q(z) = PQE ; Pi(z) and P»(z) have iy and i

roots, respectively in the interior of the circle C, and no roots on the circle.

Then

AGlpo(0)] = 7 (ix — 1) = AT o, (w)].
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o Let ty,--- ,t; denote the real distinct zeros of T'(u, p) of odd
multiplicity, for u € (—1,1), ordered as follows:
—1 <t <ty <--- <ty <+1. Suppose also that T'(u, p) has
p zeros at u = —1 and let f"(zg) denote the i-th derivative
to f(x) evaluated at = = xy.

THEOREM

Let P(z) be a real polynomial with no roots on the circle C, and
suppose that T'(u, p) has p zeros at u = —1. Then the number
of roots i of P(z) in the interior of the circle C, is given by

10
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e The result derived above can now be extended to the case of
rational functions. Let Q(z) = ggz) where P;(2),1 = 1,2 are
real rational functions.

e Tchebyshev representation of ()(z) on the circle C,.
Let R(u,p),T(u,p) be defined by:

R(u,p) = Ri(u,p)Ra(u,p) + (1 = u*)Ti(u, p)Ta(u, p)
T(u,p) = Ti(u,p)Ra(u,p) — Ri(u, p)Tiu, p)

e Suppose that T'(u, p) has p zeros at u = —1 and let ;- - -t
denote the real distinct zeros of T'(u, p) of odd multiplicity
ordered as —1 <t <ty < -+ <t < +1.

THEOREM
Let Q(z) = 242 where Pi(z),i = 1,2 are real polynomials with 4,

Ps(2)
and 19 zeros respectlvely inside the circle C, and no zeros on it. Then
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DIGITAL Pl, PD AND PID CONTROLLERS

e For PI controllers,

(KP—I-K]T) (Z— op )
C(Z) 5t Kp i KIT . z 1 KiT+Kp

o z—'1
K — K
== 1(Z 1 2) WheI‘e KP:K1K27 KI:
Z_

Ky — KK
T )

e For PD controllers,

Kp
KD A | ( T KP+TD
Clz) = K - L
(2) o T % Z
Kl(Z—KQ)

—- where Kp=K; — K1Ky, Kp= K{K;T.
%

e The general formula of a discrete PID controller, using backward
differences to preserve causality,

% +KD o by B 2k By 2l K
-1 T PR 2(z—1)
Ko+ K+ K,

Koy Ssia e me S e = RS KT

where

12
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COMPUTATION OF THE STABILIZING SET
Constant Gain Stabilization

N(z)

D(z)

o Plant G(z) =

e The closed-loop characteristic polynomial is

0(z) = D(z) + KN(z).

e Tchebyshev representations of D(z) and N(z)

D () = Rp(u)+jv1—u?Tp(u)
N (e”) = Ry(u)+jv1—uTy(u),

N (2)

e Note also that N (e /%) = Rp(u) — jv1 — u?Tp(u) and N (z71) = =5
where V,.(z) is the reverse polynomial and [ is the degree of N(z).
13
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¢ 0(z)N(z7Y)=D(Z)N(z7Y)+ KN(2)N (z71)

) Bl i)

+K [Riy(w) + (1 — v*) Ty (u)]
37 {I)D(U)RN(U) (1 —v*) Tn(w)Tn(uw) + K [Ry(u) + (1 — u”) Tx(u)]

2

R(Ku)
+jV1 —u? [Tp(u) Ry(u) ;RD(u)TN(u)l
T (u)

= R(K,u)+ jv1—u?T(u).

e The imaginary part of the above expression has been rendered
independent of K as a result of multiplying 6(z) by N(z71).

0E i i
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Constant Gain Stabilization Algorithm

o Let t;,;1 =1,2--- ,k denote the real zeros of odd multiplicity of
the fixed T'(u), for v in (—1,+1) and set tg = —1, ¢, 1 = +1.

o Write Sgn |[R(K,t;)| = z;, j=0,1,---  k+1

o Let is, iy, denote the number of zeros of §(z) and N,.(z)
inside the unit circle. For simplicity assume that N(z) has no
- unit circle zeros and therefore neither does N,.(z).

15
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Example
G(2) = 2 +1.932° +2.269222% 4+ 0.1443z — 0.7047
25— 0.224 — 3.00523 — 3.960822 — 0.0985z + 1.2311°
e Then
Rp(u) = —16u° — 1.6u" + 32.02u” — 6.3216u* — 13.9165u + 4.9919
Tp(u) = 16u* +1.6u® —24.02u> + 7.1216w + 3.9065
Ry(u) = 8u* —7.72u® — 3.4616u® + 5.6457u — 1.9739
Tnlu) = —8u® + 7.72u% — 0.5384u — 1.7857

T(u) = Tp(u)Ry(u) — Rp(u)Tn(u)
— —11.2752u* + 7.5669u> + 16.7782u? — 14.1655u + 1.203.

e The roots of T'(u) of odd multiplicity and lying in (—1,1)
are 0.0963 and 0.8358.

16
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R(K,u) = 11.2752u” + 12.1307u* — 40.6359u> — 7.1779u” + 40.8322u
—16.8293 — 19.6615u — 5.4727
+K (—11.2752u* 4 9.7262u” + 15.0696u” — 20.3653u + 7.085) .

e Since 15 = 5 for stability, and iy, = 2 and [ = 4, we must have:

a5l (. 0.8958) ~SenlA(K. 1)])

e Since Sgn [T (p)(—l)] = +1, we have the only feasible string
given by:

Sen[R(K,-1)] Sen|R(K, 0.0963)] Sen|R(K, 0.8358)] Sen[R(K, 1)]
1 1 1 |

17
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e This translates into the following set of inequalities:

R(K,—1) = —23.348 + 21.5185K > 0 = K > 1.085
R(K,0.0963) = —12.998 + 5.2709K < 0 = K < 2.466
R(K,0.8358) = —0.9232 + 0.7673K > 0 = K > 1.2032
R(K,1) = —0.4050 4 0.2403K < 0 = K < 1.6854.

e The closed loop system is stable for 1.2032 < K < 1.6854.

e In this example, we have z;,7 = 0,1, 2,3. Each z; may assume
the value +1 or —1 since 0 is excluded as we are testing for
stability. This leads to 2% = 16 possible strings which may satisfy
the signature requirement. In this example, only one string of the
possible 16 satisfies the signature requirement.

18
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Stabilization with Pl Controllers

=

:K1<Z—K2)
Z =il

(2)
D)’ Gl

e The dharacteristic polynomial: ~ §(2) =(z —1)[X2) + K (z— o) N(2)

e Writing the Tchebyshev representations of D(z), N(z) and N (27 1)

e Plant and Controller: P(z) =

e Then to achieve paraneter separation, we calculate

GEOVN DA n) e st ) = (—u et el B V8 B u2) (Pl(u) RN e u2P2(u))
—|—]K1 V 1~ U2P3(U) cp Kl (U e KQ) Pg(’LL)

where Pi(u) = Rp(u)Ry(u)+ (1 — u?) Tp(u)In(u)
Py(u) = Ry(u)Tp(u) — Tn(u)Rp(u)
Py(u) = R3(u)+ (1 —u’) TR (w).

19
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0(2)N,
5(Z)N (Z_l)‘z:ejQ,u:—COSO W (Z)Zl (Z> 0
z=el% u=— cos b

ey (u, Kl, KQ) + /1 - u?T (u, Kl)

where R (u, K1, K;) = —(u+1)Pi(u) — (1 —u?) Pa(u) — Ki (u+ K>) P3(u)
T(u, K1) = Pi(u)— (u+1)Py(u) + K1 P3(u).

e For a fixed value of Ky, we calculate the real distinct zeros ¢; of
T (u, K1) of odd multiplicity for u € (—=1,1): =1 <t; < --- <t < +1.

o Let is, iy, be the number of zeros of §(z) and N, (z) inside the unit
circle, respectively, then we have

20
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Stabilization with PD Controllers

e Plant and Controller: P(z) = JI\DTEZ;’ C(z) = K (z — Ks)
< Z

e The characteristic polynomial:  6(z) = zD(2) + K (z — K3) N(2)

e Consider

5(z)N (271 = R(u, K1, K3) + jvV1 — w?T (u, K3)

z=el® u=—cosf

where

R(u,Ki,K3) = —uPi(u) — (1—1u’) Pa(u) — K (u+ K3) Ps(u)
T(u, K1) = KiP3(u)+ Pi(u) — uPy(u).

e Parameter separation has again been achieved, that is, K; appears
only in the imaginary part and for fixed K the real part is linear in K.

e Thus the application of the root counting formulas will yield linear

inequalities in K5, for fixed Kj;.
21
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STABILIZATION WITH PID CONTROLLERS

PID Controller:

5 KQZ2 —|— Klz —|— KO
& z(z—1)

C(2)

The characteristic polynomial becomes
8(z) = 2(z — 1)D(2) + (K22° + K1z + Kp) N(z)

Multiplying the characteristic polynomial by 2 !N (271),
2 0(2)N (z7') = (z = 1)D(2)N (") + (Ksz + K1 + Koz 7' ) N(2)N (z71).

Using the Tchebyshev representations, we have

27 0(2)N (27})

—(u+ 1) Pi(u) — (1 —u?) Py(u) — [(Ko + K3) u — K] P3(u)
+jvV1—w? |[—(u+ 1) Py(u) + Pi(u) + (K2 — Ko) P3(u)]
R (u, Ko, K1, K3) + jvV1 — u?T (u, Ko, K>) .

22
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Let K3 S K2 5 Ko.

Then Kp = —K; — 2Ky, K;=2ctltfe and Kp = Ko7\

Hence we rewrite R (u, Ky, K1, Ks) and T (u, Ky, K3) as follows.

R(u, K1, K5, K3) = —(u+1)Pi(u)— (1 — u2) Py(u) — [(2Ks — K3)u — K4 P3(u)
T (u, K3)

Pi(u) — (u+1)Py(u) + K3P3(u)

» od : K5 appears only in the
1% KQ, K 3 appear linearly in the real part.

imaginary part an

Thus by applying root counting formulas to the rational function
on the left, and imposing the stability requirement yield
inequalities in the parameters for fixed K.

The solution is completed by sweeping over the range of K3 for
which an adequate number of real roots ¢, exist.

23
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Example
1
22 —0.25
e Then Rp(u)=2u*-1.25 Tp(u)=—2u, Ry(u)=1, Txy(u)=0
P () =2u%401.25," Py(u) ="~ - Palu) =

e Plant: G(z) =

e Since G(2) is of order 2 and C(2), the PID controller, is of order 2, the
mumber of roots of d(z) inside the unit circle is required to be 4 for stability.

e From Theorem (Root counting for a real polynomial),
i =iy = (is +in)— (L + 1)
N EI TS B AT
where is and iy, are the numbers of roots of §(z) and the reverse
polynomial of N(z) inside the unit circle, respectively and [ is
the degree of N(z).

24
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e Since the required 45 is 4, iy, = 0, and [ = 0, 71 — 45 is required to be 3.
e To illustrate the example in detail, we first fix K3 = 1.3.
e Then the real roots of T' (u, K3) in (—1,1) are —0.4736 and —0.0264.

e Furthermore, Sgn|[T(—1)] = 1, iy — io = 3 requires that:

[%Sgnm_m (Sg“[R<‘1” — 28gn[R(~0.4736)] + 25gn[R(~0.0264)] — Sgnmuﬂ) =3 ]

e We have only one valid sequence satisfying the above equation

e From this valid sequence, we have the following set of linear inequalities.

yi R N T R
_0.9286 + K, +0.9472 < 0
1.1286 + K; +0.0528K, > 0
LS e
% St .

25
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Kp -2 -1 0 Koy -2 =1 0 0 1 —1 K4
e, ol i e L e o T
Kp LT 0 0 K, Tl mimUSeED ¢ e AR, K3
By el ey R Ky
L T
e S K

05" _,
Stability regions in (K, Ko, K3) space (left) and (Kp, K, Kp) space (right)

26
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Maximally Deadbeat Control

e The design scheme attempts to place the closed loop poles in a circle of
minimum radius p. Let S, denote the set of PID controllers achieving such

a closed loop root cluster.

e We show below how S, can be computed for fixed p. The minimum value
of p can be found by determining the value p* for which §,« = ¢

but S, # ¢,p > p*.

I K222 g K12 i KO

e PID Controller: C(z) = 1)
Z2(z —

e The characteristic equation
6(2) = 2(z = 1)D(z) + (K22” + K1z + Ko) N(2).

e Note that  D(2)|.__ ., ,vize = Rp(u,p)+5V1—uwTp(u,p)

N(2)| e purjovizez = Bnlu,p) + V1 —uTn(u, p)

27
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el
N (p £ )}z:—pu—l—jp\/m L4, N(z>’z:—pu—jpv Ly
= Rn(u,p) — jVv1 —u?Ty(u,p).

e We evaluate

Pz 0(2)N (p°27") = pz7 [a(2 = 1)D(2) + (Koz® + Kiz+ Ko) N(2)] N (p°27)

7

-~

d(z)

over the circle C,

IOQZ_l(S(Z)N (pQZ_l) |z:—pu+jpm
= —p*(pu+1)Pi(u, p) — p° (1 —u?) Pa(u, p) — [(Ko + K2p°) pu — K1p°] Ps(u, p)
+iV1 = u? |p°Pi(u, p) — p*(pu + 1) Py(u, p) + (Kop® — Ko) pPs(u, p)]

where P (ua p) 53 RD(uv p)RN(u7 10) + (1 A u2) TD(“? p)TN(uv p)
Py(u,p) = RBy(u,p)Tp(u,p) — Tn(u, p)Rp(u,p)
Py(u,p) = Ry(u,p)+ (1 —u?) T3 (u, p).

28
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° By lettmg Kg 13 K2,02 e K(),

e we have

p2Z_1(5(Z)N ('OQZ_l) z:—pu—kjp@
= —p’(pu+1)Pi(u,p) — p° (1 —u?) Pa(u, p) — [(2K20" — K3) pu — K1p°| P3(u, p)
+3V1 — w2 [p*Pi(u, p) — p*(pu+ 1) Ps(u, p) + KzpPs(u, p)] .

e Fix K3, use the root counting formulas, develop linear inequalities in
K5, K35 and sweep over the requisite range of K3. This procedure is
then performed as p decreases until the set of stabilizing PID
parameters just disappears.

)
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Example

e We consider the same plant used in the previous example.
o Left figure shows the stabilizing set in the PID gain space at p = 0.275.

Clozed loop poles with selected PID gains
05 .

01,

imag

perfnrmancé:ré_ginn

-0.5 .
-0.5 a 05

real

30
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e For a smaller value of p, the stabilizing region in PID parameter space
disappears. This means that there is no PID controller available to push
all closed loop poles inside a circle of radius smaller than 0.275.

e From this we select a point inside the region that is

Ky = 0.0048, K, =—0.3195, K, =0.6390, Ks3=0.0435.

e From the relationship between parameters, we have

" k- oo LA _ 92 vy A = 7, x
Kp Fo 0.3099
£ ey S g e W B e K2 | = | 0.3243

B ee 0 leprt P | LE3]  [00048

e Right figure shows the closed loop poles that lie inside the circle of
radius p = 0.275. The roots are:

0.2500 &= 70.1118 and 0.2500 £ 70.0387.

31
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e We select several sets of stabilizing PID parameters from the set

obtained in the previous example (i.e., p = 1) and compare the
step responses between them.

Maximally deadbeat response Fesponses with arbirary stabilizing PID
2 ; o , ;
5 5 5 Y SO e O |
1} P i
5 5
2 g
] ]
o o
RCY R AT EELY SRV AL R
0
0 : ; -05 ; ; :
0 10 15 20 0 5 10 15 200
time

tirme
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Maximum Delay Tolerance Design

e Finding the maximum values of L* such that the stabilizing PID gain
set that simultaneously stabilizes the set of plants

5 N(z)
L g J S e B
2 Grlr) == ED(2)’ for L=0,1,---,L

e Let S; be the set of PID gains that stabilizes the plant 2 *G(z). Then
Ni,S; stabilizes 2'G(z) for all i =0,1,--- , L.

33
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Example

=0 L=0, 1

K 05 -1 P K -0.5 -1 P

e The right figure shows the stabilizing PID gains when L = 0, 1.
As seen in the figure, the size of the set is reduced as the delay

lncreases.
34
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Stability region: K5=1, L=0 Stability region: K3=1, L=0,1

Stability region: K5=1, L=0, 1, 2 Stability region is empty: K5=1, L=01,2 3

e In many systems, the set disappears for a large value of L*. This is

the maximum delay that can be stabilized by any PID controllers.
35



