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General Considerations

CHARACTERISTIC EQUATIONS FOR DEALY SYSTEMS

Delay Tu(t)

y(t) = u(t¡ T )

Integrator
u(t) y(t)_y(t)

Delay T

_y(t) + ay(t¡ T ) = u(t)

a
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Delay T Integrator
u(t) u(t¡ T )

y(t)
_y(t)

_y(t) + ay(t) = u(t¡ T )

a

IntegratorDelay T
_y(t) y(t)u(t)

IntegratorDelay T

a

_y(t) = ¡ay(t¡ T ) + u(t¡ T )
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( ) _( )Ä( )
Integrator Integrator

u(t)
y(t)

_y(t)Äy(t)

Delay T1

Delay T0a0

a1

y 0

Äy(t) + a1 _y(t¡ T1) + a0y(t¡ T0) = u(t)

Let y(t) = x1(t); _y(t) = x2(t)

Then
·

_x1(t)
_x2(t)

¸
=

·
0 1
0 0

¸ ·
x1(t)
x2(t)

¸
+

·
0 0
¡a0 0

¸ ·
x1(t¡ T0)
x2(t¡ T0)

¸
·

0 0
¸ ·

x1(t¡ T1)
¸ ·

0
¸
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+

·
0 0
0 ¡a1

¸ ·
x1(t T1)
x2(t¡ T1)

¸
+

·
0
1

¸
u(t) :
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St bilit f D l S tStability of Delay Systems

• Let y(t)=est be a proposed solution of

Ä(t) + _(t T ) + (t T ) 0y(t) + a1y(t¡ T1) + a0y(t¡ T0) = 0

• Then we have
¡
s2 + a1e

¡sT1s + a0e
¡sT0

¢
est ´ 0

¡ ¢
so that “s” must satisfy s2 + a1se

¡sT1 + a0e
¡sT0 = 0

Characteristic equation of the delay system.

The location of its zeros determine the stability of the system• The location of its zeros determine the stability of the system.

• If any roots lie in the closed RHP, the system is unstable as the 
solution grows without bound

5

solution grows without bound.
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• Consider a LTI system with ℓ distinct delays,

_x(t) = A0x(t) +
lX

Aix(t¡ Ti) + Bu(t)
i=1

• The corresponding characteristic equation isÃ
l

!
m

±(s) := det

Ã
sI ¡ A0 ¡

lX
i=1

e¡sTiAi

!
= P0(s) +

mX
k=1

Pk(s)e
¡Lks

d
n¡1 n¡1

and P0(s) = sn +
X
i=0

ais
i; Pk(s) =

X
i=0

(bk)is
i

• (Retarded Delay Systems)• (Retarded Delay Systems)

• (Neutral Delay System)

Äy(t) + a1 _y(t¡ T1) + a0y(t¡ T0) = u(t)
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(Neutral Delay System)
Äy(t¡ T2) + a1 _y(t¡ T1) + a0y(t¡ T0) = u(t)
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R t f Ch t i ti E tiRoots of Characteristic Equations

• Retarded Systems: There can only be a finite number of RHP 
roots. The stability of retarded systems is equivalent to the 
absence of closed RHP roots.

• The fact that retarded systems have a finite number of RHP 
t th t t th b f t iroots means that one can count the number of roots crossing 

into the RHP through the stability boundary and keep track of 
the number of RHP roots as some parameter vary.

• Neutral Systems: Certain root chains can approach the imaginary 
axis from the LHP and thus destroy stability.

• If delays are multiples of a common delay, we have

±(s) = a0(s) + a1(s)e
¡¿s + a2(s)e

¡2¿s + ¢ ¢ ¢+ ak(s)e
¡k¿s
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±(s) a0(s) + a1(s)e + a2(s)e + + ak(s)e
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THE PADE APPROXIMATION AND ITS LIMITATIONS

e¡sL »= Nr(sL)

Dr(sL)
where

Nr(sL) =
rX

k=0

(2r ¡ k)!

k!(r ¡ k)!
(¡sL)k

r
(2 k)!

Dr(sL)
Dr(sL) =

rX
k=0

(2r ¡ k)!

k!(r ¡ k)!
(sL)k

For example, the 3rd order Pade approximation is given by

N3(sL)

D3(sL)
=
¡L3s3 + 12L2s2 ¡ 60Ls + 120

L3s3 + 12L2s2 + 60Ls + 120
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PID St bili ti f D l S t U i 1st O d P dPID Stabilization of a Delay Systems Using a 1st Order Pade
Approximation (An Example)

• 1st Order Pade approximation ¡sL » 2¡ Ls
• 1st Order Pade approximation e sL »=

2 + Ls

Pl t G( )

·
k

¸
¡sL »

·
k

¸μ
(¡Ls + 2)

¶
• Plant G(s) =

·
Ts + 1

¸
e sL »=

·
(Ts + 1)

¸μ
( )

(Ls + 2)

¶

• With the PID controller (kp,ki,kd), the closed-loop characteristic 
polynomial becomes

±(s k ki kd) = s(Ts + 1)(Ls + 2) + (ki + k s + kds
2)(k)(¡Ls + 2)±(s; kp; ki; kd) = s(Ts + 1)(Ls + 2) + (ki + kps + kds )(k)(¡Ls + 2)

= (Ts2 + s)(Ls + 2) + (k0ds
2 + k0i)(¡Ls + 2) + k0ps(¡Ls + 2)

where k0d = kkd; k
0
i = kki; k

0
p = kkp:

9
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U i th PID D i Al ith h• Using the PID Design Algorithm, we have8>>>< ki > 0

ki ¡
·

4(1 + kkp)
¸

kd <
2(1 + kkp)(2T + L¡ kkpL)<>>>:

ki

·
L(4T + L¡ kkpL)

¸
kd <

kL(4T + L¡ kkpL)

kd <
T

k
and

¡1

k
< kp <

1

k

μ
1 +

4T

L

¶

For a fixed kp, it becomes the set of linear inequalities in terms p
of ki, kd and can be solved by LP.
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Question: Does the 
1st order Pade1 order Pade
approximation 
accurately capture 
the actual set of 
stabilizing PID 
parameters for the 
original time-delay 
system?

The stabilizing set of (ki,kd) values for a fixed kp. Next Example

11
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E lExample

• Plant G(s) =

·
1:6667

1 + 2 9036s

¸
e¡0:2475s

·
1 + 2:9036s

¸

• Plant with the 1st order Pade approximation

Gm(s) =
1:6667

(1 + 2 9036s)

(¡0:1238s + 1)

(0 1238s + 1)(1 + 2:9036s) (0:1238s + 1)

Compute the entire stabilizing PID parameter values• Compute the entire stabilizing PID parameter values.
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kp = 8:4467
Time-response of the 
closed-loop systemp 8 67

ki = 60

kd = 1:5

closed loop system

The stabilizing (ki,kd) values at 
kp=8.4467

13

Showing unstable behavior!
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• Tried with the 2nd, 3rd, and 5th order Pade approximation

• While the 2nd order Pade approximation fails to capture the 
actual stabilizing set, the 3rd and 5th order Pade

14

g ,
approximations apparently do a better job.
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Example with large delay

• Plant G(s) =

·
1

1 + s

¸
e¡10s

• Approximate the time-delay term using the 1st, 2nd, 3rd, 5th, 7th, 
and 9th order Pade approximations

15

1st and 2nd order approximations 3rd, 5th, 7th, and 9th order approximations
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• For small values of the time-delay the approximate sets easily

Observations

• For small values of the time delay, the approximate sets easily 
converge to the possible true sets. However, the convergence 
becomes more difficult as the value of the time-delay increases.

The convergence of the approximate set to a possible true set• The convergence of the approximate set to a possible true set 
improves with increased order of the Pade approximation.

• The Pade approximation is not a satisfactory tool for ensuring 
the stability of the resulting control design.

It i t i i l t h t d f th i ti ill• It is not a priori clear as to what order of the approximation will 
yield a stabilizing set of parameters accurately approximating the 
true set.

16
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Pontryagin’s results
THE HERMITE-BIEHLER THEOREM FOR QUASI-POLYNOMIALS
Let be a polynomial in two variables with real or complex f(s; t)

Pontryagin s results

coefficients defined as follows:

f(s; t) =
MX NX

ahks
htk

h=0 k=0

Definition
is said to have a principal term if there exists a nonzerof(s; t) is said to have a principal term if there exists a nonzero 

coefficient where both indices have maximal values. Without loss 
of generality, we will denote the principal term as This means 
that for each other term for we have either 

f( ; )
ahk

aMNsM tN :

ahks
htk; ahk 6= 0;

Example does not have a principal term but

hk ; hk 6 ;

M > h;N > k; or M = h;N > k; or M > h;N = k:

f(s; t) = 3s + t2

17

Example does not have a principal term but 
the polynomial does.
f( ; )

f(s; t) = s2 + t + 2s2t
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Theorem (Pontryagin)

If the polynomial does not have a principal term, then the 
function has an infinite number of zeros with arbitrarily 

f(s; t)
F (s) = f(s; es) y

large positive real parts.
( ) f( ; )

If does have a principal term, the main result of 
Pontryagin is to show that the Hermite-Biehler Theorem extends 

f(s; t)

to the class of functions F (s) = f(s; es):

18
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Study of the zeros of functions of the form g(s,cos(s),sin(s))

• Let g(s,u,v) be a polynomial with real coefficients:
M N

g(s; u; v) =
MX

h=0

NX
k=0

shÁ
(k)
h (u; v)

Á
(k)

(u v) i l i l f d k h i dÁ
( )
h (u; v) is a polynomial of degree k, homogeneous in u and v.

• Assume that Á
(k)
h (u; v) is not divisible by u2 + v2 :Assume that Áh (u; v) is not divisible by u + v :

Á
(k)
h (1;§j) 6= 0

• Let Á¤(N)(u; v) =
NX

k=0

Á
(k)
M (u; v) the coefficient of sM

19
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• Consider G(s) = g(s; cos(s); sin(s))

• Let ©¤(N)(s) := Á¤(N)(cos(s); sin(s))( ) Á ( ( ); ( ))

THEOREM

L t ( ) b l i l ith i i l t i b sMÁ
(N)

(u v)Let g(s,u,v) be a polynomial with principal term given by                   
If η is such that                   does not take the value zero for real ω, 
then starting from some sufficiently large value of the function G(s)
will have exactly zeros in the strip

s Á
( )
M (u;v):

©¤(N)(´ + j!)

4lN + M

l;
will have exactly             zeros in the strip

¡2l¼ + ´ · Re[s] · 2l¼ + ´:

Thus for the function G(s) to have only real roots it is necessary and

4lN + M

Thus for the function G(s) to have only real roots, it is necessary and 
sufficient that in the interval

¡2l¼ + ´ · Re[s] · 2l¼ + ´;

it h tl l t t ti ith ffi i tl l l

20

it has exactly             real roots starting with some sufficiently large 4lN + M l:
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• Consider

f(s; t) =
MX

h=0

NX
k=0

ahks
htk = sMX¤(N)(t) +

M¡1X
h=0

NX
k=0

ahks
htk

X¤(N)(t) =
NX

aMkt
k

X
k=0

Definition

L t h f( t) i l i l ith i i l tF ( ) f( s)Let where f(s,t) is a polynomial with a principal term, 
and F (j!) = Fr(!) + jFi(!)

Let ωr1, ωr2, ωr3, … denote the real roots of Fr(ω), and let ωi1, ωi2, ωi3, 

F (s) = f(s; es):

… denote the real roots of Fi(ω), both arranged in ascending order of 
magnitude. The we say that the roots of Fr(ω) and Fi(ω) interlace if 
they satisfy the following property:

21

!r1 < !i1 < !r2 < !i2 < ¢ ¢ ¢
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THEOREM (HB Theorem to quasi-polynomial)THEOREM (HB Theorem to quasi-polynomial)

If all the roots of F(s) lie in the open LHP, then the roots of Fr(ω)
and Fi(ω) are real, simple, interlacing, and

0 0
F

0
i (!)Fr(!)¡ Fi(!)F

0
r(!) > 0 (¤)

for each ω (-∞,∞), where Fr
’(ω) and Fi

’(ω) denote the first 
derivative with respect to ω of Fr(ω) and Fi(ω), respectively. r i
Moreover, in order that all the roots of F(s) lie in the open LHP, it is 
sufficient that one of the following conditions be satisfied:

1 All the roots of F (ω) and F (ω) are real simple and interlacing1. All the roots of Fr(ω) and Fi(ω) are real, simple, and interlacing 
and the inequality (*) is satisfied for at least one value of ω;

2. All the roots of Fr(ω) are real and for each root , (*) is satisfied, 
i.e., 

3. All the roots of Fi(ω)  are real and for each root, (*) is satisfied, 
i.e., 

Fi(!r)F
0
r(!r) < 0;

F
0
i (!i)Fr(!i) > 0:

22
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THEOREM

If the function              has roots in the open RHP, then the 
function F(s) has an unbounded set of zeros in the open RHP. 
If all the zeros of the function              lie in the open LHP, 

X¤(N)(es)

X¤(N)(es) p ,
then the function F(s) can only have a bounded set of zeros in 
the open RHP.

23
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Application to Control Theory

Classes of Quasi-polynomials:

Retarded-type (or delay-type) Quasi-polynomials: This class 
consists of quasi-polynomials whose asymptotic chains go deep into 
the open LHP.

Neutral-type quasi-polynomials: This class consists of quasi-
polynomials that along with delay-type chains contain at least one 
asymptotic chain of roots in a vertical strip of the complex plane.y p p p p

Forestall-type quasi-polynomials: This class consists of quasi-
polynomials with at least one asymptotic chain that goes deep into 
the open RHPthe open RHP.

24
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Definition
A delay-type quasi-polynomial is said to be stable iff all its roots 
have negative real partshave negative real parts.

Definition
A neutral-type quasi-polynomial is said to be stable if there 
exists a positive number σ such that the real parts of all its roots 
are less than –σ.

25
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THEOREM

Let ±¤(s) = esLmd(s) + es(Lm¡L1)n1(s) + es(Lm¡L2)n2(s) + ¢ ¢ ¢+ nm(s)

and write                                     Under the following conditions±¤(j!) = ±r(!) + j±i(!):

(A1) deg[d(s)] = q and deg[ni(s)] · q for i = 1; 2; :::;m;

(A2) 0 < L1 < L2 < ¢ ¢ ¢ < Lm

is stable iff±¤(s)( )

1. and         have only simple, real roots and these interlace,

2.

±r(!) ±i(!)

±
0
i(!o)±r(!o)¡ ±i(!o)±

0
r(!o) > 0; for some !o 2 (¡1;1):

26
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E lExample

• Plant G(s) =
1

2s + 1
; C(s) = kp +

ki

s
=

kps + ki

s2s + 1 s s

• With kp=1.8, ki=0.2, we have                                      and it is 
stable.

±(s) = 2s2 + 2:8s + 0:2
stable.

• Consider G(s) =

·
1

2s + 1

¸
e¡10s

·
2s + 1

¸
• With kp=1.8 and ki=0.2, the characteristic equation of the 

closed-loop system is:c osed oop syste s
±(s) = 2s2 + s + (1:8s + 0:2)e¡10s = 0

• For analyzing the stability, consider

27

±¤(s) = e10s±(s) = (2s2 + s)e10s + 1:8s + 0:2
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• The real and imaginary parts are given by

±r(!) = 0:2¡ ! sin(10!)¡ 2!2 cos(10!)

( ) [ ( ) ( )]±i(!) = ![1:8 + cos(10!)¡ 2! sin(10!)] :

Shows interlacing Shows instability

28

Shows interlacing. Shows instability
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Analysis

1. The example illustrates the case of a time-delay system that 
satisfies the interlacing and monotonic phase increase properties 
but fails to be stable.but fails to be stable.

2. The reason for this behavior lies in the nature of the roots of real 
and imaginary parts of the polynomial: they are not all real.

THEOREM (Pontyagin)

Let M and N denote the highest powers of s and es, respectively, inLet M and N denote the highest powers of s and e , respectively, in 
δ*(s). Let η be an appropriate constant such that the coefficients of 
terms of highest degree in δr(ω) and δi(ω) do not vanish at ω=η. 
Then for the equations δr(ω)=0 or δi(ω)=0 to have only real roots, q r( ) i( ) y ,
it is necessary and sufficient that in each of the intervals

¡2l¼ + ´ · ! · 2l¼ + ´ l = lo; lo + 1; lo + 2; ¢ ¢ ¢
δ (ω) or δ (ω) have exactly real roots for a sufficiently large4lN + M l

29

δr(ω) or δi(ω) have exactly             real roots for a sufficiently large4lN + M l0:
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• Let ŝ = 10s

±̂¤(ŝ) = (0:02ŝ2 + 0:1ŝ)eŝ + 0:18ŝ + 0:2

• The real and imaginary parts of the new quasi-polynomial  is

±̂r(!̂) = 0:2¡ 0:1!̂ sin(!̂)¡ 0:02!̂2 cos(!̂)( ) ( ) ( )

±̂i(!̂) = !̂[0:18 + 0:1 cos(!̂)¡ 0:02!̂ sin(!̂)] :

• The roots of ±̂i(!̂) = 0( )

!̂o = 0; !̂1 = 8:0812; !̂2 = 8:8519; !̂3 = 13:5896; !̂4 = 15:4332;

!̂5 = 19:5618; !̂6 = 21:8025; ¢ ¢ ¢

• Choose ´ =
¼

4

30
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1 h l l t i [0±̂ (^)1. has only one real root in   [0, 
2π-π/4]; the root at the origin.

2. Since          is an odd function, in 
th i t l [ 7 /4 7 /4]

±i(!)

±̂i(!̂)
±̂ (^)the interval [-7π/4, 7π/4] ,       

will have only one real root.

3. has no real roots in the 
interval [7π/4 9π/4];

±i(!̂)

±̂i(!̂)

^ ( )interval [7π/4, 9π/4];               
has only one real root in [-2π+π/4, 
2π+π/4] which does not sum up to 

4N + M = 6 for l0 = 1:

±i(!̂)

4N + M 6 for l0 1:

4. Let           so  the requirement  on the number if real roots is 8N+M=10.        
has only five real roots in [-4π+π/4, 4π+π/4].

l0 = 2 ±̂i(!̂)

has only five real roots in [ 4π+π/4, 4π+π/4].

5. Following the same procedure for                 we see that the number of real 
roots of          in [-2 π+π/4, 2 π+π/4] is always less than 

6 W l d h h f ll l

l = 3; 4; :::

l±̂i(!̂) l 4lN + M = 4l + 2:

±̂ ( )

31

6. We conclude that the roots of          are not all real.±i(!̂)
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STABILITY OF SYSTEMS WITH A SINGLE DELAY

• Consider the characteristic equation

±(s; L) = d(s) + n(s)e¡Ls = 0

• Problem: Determine the ranges of values of L for which all the 
roots of the  characteristic equation lie in the LHP.

• A systematic procedure to analyze the behavior of the roots of 
th h t i ti l i l L i f 0 tthe characteristic polynomial as L increases from 0 to ∞. 

32
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Walton and Marshall’s ProcedureWalton and Marshall s Procedure

Step 1: Examine the stability at L=0.

Step 2: • Examine the behavior of the roots as increasing L from 0 to 
an infinitesimally small and positive.

• The number of roots changes from being finite to infinite. 
For an infinitesimally small L, the new roots must come in at 
infinity. Otherwise, e-Ls ≈1 and no new roots.y ,

• Determine where in complex plane these new roots arise.

• If deg[n(s)]<deg[d(s)], the roots ‘’s’’ is large iff e-Ls is large 
(i.e., Re[s]<0)             New roots occur in the open LHP

• If deg[n(s)]=deg[d(s)], the location of the roots is 
determined by the sign of W(ω2) for large ω.

33
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Step 3: • Examine potential crossing points on the imaginary axisStep 3: • Examine potential crossing points on the imaginary axis 
(we separately consider the case s=0)

• Consider½
d(j!) + n(j!)e¡jL! = 0

d(¡j!) + n(¡j!)ejL! = 0
d(j!)d(¡j!)¡ n(j!)n(¡j!) = 0

W(!2) := d(j!)d(¡j!)¡ n(j!)n(¡j!)

• If no positive roots of W(ω2)=0, then no values of L for 
which ±(j!; L) = 0

Remark

If deg[n(s)]<deg[d(s)] and W(ω2) has no positive real roots, then there 
is no change in stability:
The system will be stable for all L≥0 if the system is stable at L=0.

34

The system will be stable for all L≥0 if  the system is stable at L 0.
The system will be unstable for all L≥0 if  the system is unstable at L=0.
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Case when s=0Case when s=0

In this case, we have only one equation

d(0) + n(0) = 0 ) d(0) + e¡L0n(0) = 0; for all ¯nite L( ) ( ) ( ) ( ) ;

The system is unstable for all values of L and for analysis this 
solution can be ignoredsolution can be ignored.

To find L,

d(j!) + n(j!)e¡jL! = 0 ) e¡jL! = ¡d(j!)

n(j!)
:= cos(L!)¡ j sin(L!)

Once we have found a value of L at which there is a root of the 
characteristic equation on the imaginary axis, we need to determine 
if the root crosses the imaginary axis and in which direction or if it g y
merely touches the imaginary axis.

35
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Re

·
ds

¸
> 0 Re

·
ds

¸
< 0 Re

·
ds

¸
= 0Re

·
dL

¸
> 0

destabilizing

Re

·
dL

¸
< 0

stabilizing

Re

·
dL

¸
0

Necessary to consider 
high-order derivativesg

After some manipulations, we have

S = sgn
£
W 0(!2)

¤
=

½
¡1; destabilizing
+1 stabilizing

g
£

( )
¤ ½

+1; stabilizing

36
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Examplep

±(s; L) = s + 2e¡Ls

1. Examine δ(s,0)=s+2, so the system is stable for L=0.

2. Since deg[d(s)]=1>deg[n(s)]=0, we skip step 2.

3. From d(s)=s, n(s)=2, we have W(ω2)= ω2-4.

• W’(ω2)=1>0.

• Since S=sgn[W’(ω2)]=1, the root is destabilizing.

• The corresponding values of L are

8 ·
j!

¸8>><>>:
cos(L!) = Re

·
¡j!

2

¸
= 0

sin(L!) = Im

·
¡j!

2

¸
= 1

L = (4k + 1)
¼

4
; k = 0; 1; 2; ¢ ¢ ¢

37
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At L /4 two roots of δ(s L) 0 cross from left to right• At L=π/4, two roots of δ(s,L)=0 cross from left to right 
of the imaginary axis.

• At L=5π/4, two more roots cross from left to right of the 
imaginary axis and so on.

ConclusionConclusion
The region of stability is 0 ≤ L< π/4

38
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FIRST ORDER SYSTEMS WITH TIME-DELAYFIRST ORDER SYSTEMS WITH TIME DELAY

Plant: G(s) =

·
k

1 + Ts

¸
e¡Ls

·
1 + Ts

¸

PID Controller: C(s) = kp +
ki

s
+ kds

Stability Conditions for Delay free Systems

Characteristic Polynomial without time-delay:
±(s) = (T + kkd)s

2 + (1 + kkp)s + kki

Assuming k>0, we have½
kp > ¡1

k
; ki > 0; kd > ¡T

k

¾
or

½
kp < ¡1

k
; ki < 0; kd < ¡T

k

¾
39
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Characteristic Polynomial with time delay:Characteristic Polynomial with time-delay:

±(s) = (kki + kkps + kkds
2)e¡Ls + (1 + Ts)s

Write
eLs±(s) = kki + kkps + kkds

2 + (1 + Ts)seLs =: ±¤(s)

Substituting s=jω,
±¤(j!) = ±r(!) + j±i(!)

wherewhere

±r(!) = kki ¡ kkd!
2 ¡ ! sin(L!)¡ T!2 cos(L!)

±i(!) = ! [kkp + cos(L!)¡ T! sin(L!)]( ) [ p ( ) ( )]

We now separately treat the two cases: open-loop stable 
and open-loop unstable plants.

40
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Open loop Stable PlantOpen-loop Stable Plant

Plant: G(s) =

·
k

1 + Ts

¸
e¡Ls T>0 (for stable plants)

·
1 + Ts

¸

±¤(j!) = ±r(!) + j±i(!)

±r(!) = kki ¡ kkd!
2 ¡ ! sin(L!)¡ T!2 cos(L!)

±i(!) = ! [kkp + cos(L!)¡ T! sin(L!)]

• kp only affects δi ω .

• ki and kd affect δr ω .i a d d a ect δr ω

• Parameters appear affinely in δr ω  and δi ω .  

For stability δ ω and δ ω must have all real roots and these

41

For stability, δr ω  and δi ω  must have all real roots and these 
roots must interlace.
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LLemma

The imaginary part of δ* jω  has only simple real roots iff

1 1
·
T

¸
where α1 is the solution of the equation

¡1

k
< kp <

1

k

·
T

L
®1 sin(®1)¡ cos(®1)

¸

in the interval (0, π .
tan(®) = ¡ T

T + L
®

This lemma gives the ranges of kp.

42



PID Controllers for Systems with Time-Delay

L t L 0 thLet z=ωL≠0, then

±r(z) =
k

L2
z2 [¡kd + m(z)ki + b(z)]

where 

m(z) =
L2

z2
; b(z) = ¡ L

kz

·
sin(z) +

T

L
z cos(z)

¸· ¸
Lemma
For each value of kp in the range, the necessary and sufficientFor each value of kp in the range, the necessary and sufficient 
conditions on ki and kd for the roots of δr(z) and δi(z) to interface is 
the following infinite set of inequalities:

ki > 0 kd > m1ki + b1 kd < m2ki + b2 kd > m3ki + b3

where the parameters mj and bj for j=1,2,3,… are given by

ki > 0; kd > m1ki + b1; kd < m2ki + b2; kd > m3ki + b3;

kd < m4ki + b4; ¢ ¢ ¢

43

mj := m(zj); bj := b(zj):
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Theorem

The range of k values for which a given open-loop stable plant withThe range of kp values for which a given open loop stable plant, with 
transfer function considered, can be stabilized using a PID controller 
is given by

1 1
·
T

¸
where α1 is the solution of the equation

¡1

k
< kp <

1

k

·
T

L
®1 sin(®1)¡ cos(®1)

¸

in the interval  0,π . For kp values outside this range, there are no 
bili i PID ll Th l bili i i i i b

tan(®) = ¡ T

T + L
®

stabilizing PID controllers. The complete stabilizing region is given by:
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For each kp ‐1/k,1/k , 
the cross‐section of the 
stabilizing region in the 
k k space is theki,kd  space is the 
trapezoid T;

For kp=1/k, the p
cross-section of the 
stabilizing region in 
the (ki,kd) space is 
th t i l Δthe triangle Δ;

For each k 1/k k the cross‐
mj =

L2

z2
j

;

For each kp 1/k,ku , the cross
section of the stabilizing region in the 
ki,kd  space is the quadrilateral Q.

bj = ¡ L

kzj

·
sin(zj) +

T

L
zj cos(zj)

¸
!j =

zj

kL

·
sin(zj) +

T

L
zj(cos(zj) + 1)

¸
45

kL

·
L

¸
where zj are the real, positive solutions of kkp + cos(z)¡ T

L
z sin(z) = 0
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Algorithm for Determining Stabilizing PID ParametersAlgorithm for Determining Stabilizing PID Parameters

1. Initialize kp=-1/k and step=(ku+1/k)/(N+1) where N is the desir
ed number of points and 

2 S t K k t

ku =
1

k

·
T

L
®1 sin(®1)¡ cos(®1)

¸
2. Set Kp=kp+step;

3. If kp<ku, then go to 4. Else terminate the algorithm.

4 Find the roots z and z of4. Find the roots z1 and z2 of

kkp + cos(z)¡ T

L
z sin(z) = 0:

5. Compute the parameters mj and bj, j=1,2 associated with the zj.

6. Determine the stabilizing region in the (ki,kd) space.

L

46

g g ( i, d) p

7. Go to 2.
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E l (L ti f Z N l ti i th t)Example (Location of Z-N solution in the set)

G(s) =

·
0:1

0 01 1

¸
e¡0:1s( )

·
0:01s + 1

¸
Stabilizing parameter 
set obtained by 
Ziegler Nichols stepZiegler-Nichols step 
response method.

Stabilizing region

Stabilizing parameter 
set with the largest 
stability radius

47Kp=1.2

stability radius.



PID Controllers for Systems with Time-Delay

E l (S t i P d A i ti S t iExample (Set using Pade Approximation vs. Set using 
a True Delay System)

Set from the true delay system
3D stabilizing set

48

Set from the 1st order Pade approximation
(It contains destabilizing parameters)
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Open loop Unstable PlantOpen-loop Unstable Plant

Plant: G(s) =

·
k

1 + Ts

¸
e¡Ls T<0 (for unstable plants)

·
1 + Ts

¸

Lemma

For |T/L|>0.5, δi jω) has only simple real roots iff

1

k

·
T

L
®1 sin(®1)¡ cos(®1)

¸
< kp < ¡1

k

where α1 is the solution of the equation

k

·
L

( ) ( )

¸
p

k

tan(®) =
T

®

in the interval (0,π . In the special case of |T/L|=1, we have α1 π/2. 
For |T/L|≤0 5 the roots of δ jω) are not all real

tan(®) = ¡
T + L

®

49

For |T/L|≤0.5, the roots of δi jω) are not all real.
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Let z=ωL≠0Let z=ωL≠0,

±r(z) =
k

L2
z2 [¡kd + m(z)ki + b(z)]

where m(z) =
L2

z2
; b(z) = ¡ L

kz

·
sin(z) +

T

L
z cos(z)

¸
Lemma
For each value of kp in the range, the necessary and sufficient 
conditions on ki and kd for the roots of δr(z) and δi(z) to interlace are 
the following infinite set of inequalities:

ki < 0; kd < m1ki + b1; k ¡ d > m2ki + b2; kd < m3ki + b3;

kd > m4ki + b4 ¢ ¢ ¢
where the parameters mj and bj for j=1,2,3,… are given by

kd > m4ki + b4;

mj := m(zj); bj := b(zj)

50
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TheoremTheorem

A necessary and sufficient condition for the existence of a stabilizing 
PID controller for the open-loop unstable plant considered is 
|T/L| 0 5 If thi diti i ti fi d th th f k l|T/L|>0.5. If this condition is satisfied, then the range of kp values 
for which a given open-loop unstable plant, with transfer function 
considered, can be stabilized using a PID controller is given by

1
·
T

¸
1

where α1 is the solution of the equation

1

k

·
T

L
®1 sin(®1)¡ cos(®1)

¸
< kp < ¡1

k

where α1 is the solution of the equation

tan(®) = ¡ T

T + L
®

in the interval (0,π). In the special case of |T/L|=1, we have 
α1 π/2. For kp values outside this range, there are no stabilizing PID 
controllers. Moreover, the complete stabilizing region is given:
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For each kp kl,‐1/k , the 
cross‐section of the 
stabilizing region in thestabilizing region in the 
ki,kd  space is 
quadrilateral Q. 

The stabilizing region of (ki,kd) for kl<kp<-1/k where

kl :=
1

k

·
T

L
®1 sin(®1)¡ cos(®1)

¸
52
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·
L
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E lExample 

dy(t)
0 25y(t) 0 25u(t 0 8)

Consider a process defined by 

G(s) =
1

e¡0:8s( )

dt
= 0:25y(t)¡ 0:25u(t¡ 0:8) G(s) =

1¡ 4s
e

The stabilizing region of 
(k k k ) l f h(kp,ki,kd) values for the 
PID controllers. 
(-8.6876<kp<-1)

53



ARBITRARY LTI SYSTEMS WITH A SINGLE
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ARBITRARY LTI SYSTEMS WITH A SINGLE 
TIME-DELAY

Tsypkin proposed a method to extend the Nyquist criterion to dealTsypkin proposed a method to extend the Nyquist criterion to deal 
with time-delay systems (1946). This may lead to misleading 
conclusions unless care is taken.

Example G(s) =
2s + 1

s + 2

• The closed-loop system is stable with unity negative feedback.

• According to Tsypkin, the closed-loop system should tolerateAccording to Tsypkin, the closed loop system should tolerate 
a time-delay upto 3.7851.

• However, when we add a 1 second delay to the nominal 
transfer function the closed-loop system becomes unstable

54

transfer function, the closed-loop system becomes unstable.
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• The Nyquist plot intersects the 
unit circle at ω 1unit circle at ω0=1.

• The closed-loop system should 
tolerate a time-delay upto The closed-loop system is 

unstable with a 1 second delay

55

L0 =
¼ + arg G(j!0)

!0
= 3:7851:

unstable with a 1 second delay.



Pontryagin’s Theory vs. the Nyquist Criterion
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y g y yq

Let h(z,t) be a polynomial in the two variable z and t with constant 
coefficients,

h(z t) =
X

a zmtnh(z; t) =
X
m;n

amnz t

The term arszrts is called the principle term of the polynomial if ars≠0
and r and s each attain their maximum.

Write
h(z; t) = Â(s)

r (t)zr + Â
(s)
r¡1(t)z

r¡1 + ¢ ¢ ¢+ Â
(s)
1 (t)z + Â

(s)
0 (t);

where are polynomials in twith degree atÂ
(s)
j (t); j = 0; 1; 2; : : : ; rwhere                                    are polynomials in twith degree at 

most equal to s.
Âj (t); j 0; 1; 2; : : : ; r

56
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Two Theorems of Pontryagin to Clarify Nyquist CriterionTwo Theorems of Pontryagin to Clarify Nyquist Criterion 
Based Conditions for Systems with Time-delay

TheoremTheorem
If the polynomial                                 has no principal term, then the 
function

h(z; t) =
X
m;n

amnz
mtn

has an unbounded number of zeros with arbitrary large positive real part.

H(z) = h(z; ez)

Theorem
Let H(z)=h(z,ez) where h(z,t) is a polynomial with principal term arszrts. 
If the function χr s ez  has roots in the open RHP, then the function H(z)
has an unbounded set of zeros in the open RHP. If all the zeros of the 
function χr s ez lie in the open LHP, then the function H(z) has no 

th b d d t f i th RHP

57

more than a bounded set of zeros in the open RHP. 
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C diti hi h h ld b ti fi d h i thConditions which should be satisfied when using the 
Nyquist criterion with the conventional Nyquist contour

Theorem
Suppose that we are given a unity feedback system with an open-loop 
transfer function

G( ) G ( ) ¡Ls

·
N(s)

¸
¡Ls

where N(s) and D(s) are real polynomials of degree m and n, 
respectively and L is a fixed delay Then we have the following

G(s) = G0(s)e
Ls =

·
( )

D(s)

¸
e Ls

respectively and L is a fixed delay. Then we have the following 
conclusions:
1. If n<m, or, n=m and |bn/an|≥1 where an, bn are the leading 

coefficients of D(s) and N(s) respectively the Nyquist criterion is notcoefficients of D(s) and N(s), respectively, the Nyquist criterion is not 
applicable and the system is unstable according to Pontryagin’s
theorems.

58

2. If n>m, or, n=m and |bn/an|<1, the Nyquist criterion is applicable 
and we can use it to check the stability of the closed-loop system.
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It is appropriate to point out that most likely Typkin assumed the pp p p y yp
plant to be strictly proper, though he did not state it explicitly in 
the literature.  Attaching a PID controller to a proper or strictly 
proper plant opens up the very real possibility of ending up with 
an improper or a proper open-loop transfer function. This is the 
reason that the above investigation had to be undertaken.

59
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Solution Approach

1. Find the complete set of k’s which stabilize the delay-free plant P0(s)
and denote this set as S0.

2. Define the set SN, which is the set of k’s such that C(s,k)P0(s) is an2. Define the set SN, which is the set of k s such that C(s,k)P0(s) is an 
improper transfer function or

lim
s!1

jC(s;k)P0(s)j ¸ 1

Note that the elements in SN make the closed-loop system unstable 
after the delay is introduced. Exclude SN from S0 and denote the new 
set by S1, that is, S1 = S0nSN

3. Compute the set SL:

SL =
©
k j k 62 SN and 9L 2 [0; L0]; ! 2 R; s:t:C(j!)P0(j!)e¡jL! = ¡1

ª
SL is the set of k’s which make C(s,k)P(s) have a minimal destabilizing 
delay that is less than or equal to L0.

4 The set is the solutionSR = S1nSL

60

4. The set                  is the solutionSR = S1nSL
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TheoremTheorem
The set of controllers C(s,k) denoted by SR is the complete set of 
controllers in the unity feedback configuration that stabilize the plant 
P(s) with delay L from 0 up to L0.P(s) with delay L from 0 up to L0.

Proportional Controllers

Plant and controller: P (s) = P0(s)e
¡Ls =

·
N(s)

¸
e¡Ls C(s) = kPlant and controller: P (s) = P0(s)e =

·
D(s)

¸
e ; C(s) = kp

To implement the method, the key is to find SL.
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Th i t th N i t i ( 1 0) Fi d L d ti f iThe point the Nyquist curve crossing (-1,0): Find L and ω satisfying

C(j!)P0(j!)e¡jL! = ¡1

arg[kpP0(j!)]¡ L! = 2h¼ ¡ ¼; h 2 Z

jkpP0(j!)j = 1:

L(!; kp) =
arg[kpP0(j!)] + ¼

!
1

kp(!) = § 1

jP0(j!)j :

62
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• For kp>0, 
L(!; kp) = L(!) =

arg[P0(j!)] + ¼

!

Solve L(ω)≤L0 to get a set of ω: Ω
Set of kp>0 corresponding to Ω : SL

SL+ consists of all the positive kp’s that make the system 
have poles on the imaginary axis for certain L≤L0.

• For Kp<0,
Ω‐ :  a set of ω for L(ω)≤L0
SL‐ : a set of kp<0 corresponding to Ω‐

The complete set S : SL = S+
L [ S¡L

63

The complete set SL: SL SL [ SL
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Algorithm for P Controllers

1. Compute the delay-free stabilizing kp set, S0

2 Fi d S2. Find SN

• If deg[N(s)]>deg[D(s)], SN=R. i.e., SR=

• If deg[N(s)]<deg[D(s)] S =• If deg[N(s)]<deg[D(s)], SN=

• If deg[N(s)]=deg[D(s)], 

SN =

½
k j jk j ¸

¯̄̄
an

¯̄̄¾
where an, bn are the leading coefficients of D(s) and N(s).

3 Compute

SN =

½
kp j jkpj ¸

¯̄̄
bn

¯̄̄¾
;

S S nS3. Compute 

4. Compute  SL

5 Compute

S1 = S0nSN

SR = S1nSL

64

5. Compute SR = S1nSL
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ExampleExample

P (s) =

·
s2 + 3s¡ 2

s3 + 2s2 + 3s + 2

¸
e¡Ls with delay up to L0 = 1:8

• For the delay-free plant, 
the stabilizing kp range g p g
S0=(-0.4093,1).

• Since 
deg[N(s)]=2<deg[D(s)],deg[N(s)] 2<deg[D(s)], 
SN=  and S1=S0

• For kp>0,                   
Ω 1 5129 ∞Ω 1.5129,  ∞
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• The corresponding S + = [0 4473 +∞• The corresponding SL+ = [0.4473, +∞
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For kp<0,  Ω‐ 0.7359, p
1.3312     2.6817,  ∞

The corresponding     SL
‐0.6025, ‐0.4135     ,

‐∞, ‐1.3691

SR = S1nSL

( 0 4093 1)n([0 4473 ) [ 0 6025 0 4135] ( 1 3691])

67

= (¡0:4093; 1)n([0:4473; +1) [ [¡0:6025;¡0:4135] [ (¡1;¡1:3691])

= (¡0:4093; 0:4473)
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PI ControllersPI Controllers

PI Controller: C(s) = kp +
ki

s
=

kps + ki

s

Open-loop transfer function:

G(s) = C(s)P (s) = C(s)P0(s)e
¡Ls = G0(s)e

¡Ls

Consider G0(s) = C(s)P0(s) =

μ
kps + ki

s

¶
N(s)

D(s)

= (kps + ki)
N(s)

sD(s)| {z }
R0(s)R0(s)

Magnitude and phase conditions

arg[(ki + jkp!)R0(j!)]¡ L! = ¡¼

68

arg[(ki + jkp!)R0(j!)] L! ¼

j(ki + jkp!)R0(j!)j = 1
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Rewrite the magnitude and phase conditionsRewrite the magnitude and phase conditions,

L(!; kp; ki) =
arg[(ki + jkp!)R0(j!)] + ¼

!!

ki = §
s

1

jR0(j!)j2 ¡ k2
p!

2:

Fix kp, then

M(!) =
1

jR0(j!)j2 ¡ k2
p!

2
ki = §

p
M(!)

Note that only those ω’s with M(ω)≥0 need consideration 
when computing SL. 
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Algorithm for PI Controllers

1. Compute S0

2 C t S2. Compute SN

• If deg[N(s)]>deg[D(s)], SN=R2, i.e., SR=

• If deg[N(s)]<deg[D(s)] S =• If deg[N(s)]<deg[D(s)], SN=

• If deg[N(s)]=deg[D(s)], 

where a , b are leading coefficients of D(s) and N(s).

SN =

½
(kp; ki)jkp; ki 2 R and jkpj ¸

¯̄̄̄
an

bn

¯̄̄̄¾
where an, bn are leading coefficients of D(s) and N(s).

3. Compute

4. For a fixed kp, find SR,kp

S1 = S0nSN

p, R,kp 

• Determine the sets Ω and

• Determine the sets Ω‐ and

S+
L;kp

:

S¡L;kp
:
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5 Compute5. Compute

SL;kp = S+
L;kp

[ S¡L;kp

SR;kp = S1;kpnSL;kp

6. By sweeping over kp, the complete set of PI controllers that 

p p p

p
stabilize all plant with delay up to L0

SR =
[
kp

SR;kp

kp

71
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PID Controllers for an Arbitrary LTI Plant with DelayPID Controllers for an Arbitrary LTI Plant with Delay

G(s) = C(s)P0(s)e
¡Ls = G0(s)e

¡Ls

wherewhere

G0(s) = C(s)P0(s) =
kds

2 + kps + ki

s
¢ N(s)

D(s)

2

·
N(s)

¸
= (kds

2 + kps + ki)

·
N(s)

sD(s)

¸
| {z }

R0(s)

The magnitude and phase conditions:

arg[(ki ¡ kd!
2 + jkp!)R0(j!)]¡ L! = ¡¼

j(ki ¡ kd!
2 + jkp!)R0(j!)j = 1
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Rewrite the phase and magnitude conditions,Rewrite the phase and magnitude conditions,

L(!; kp; ki; kd) =
¼ + arg ([(ki ¡ kd!

2) + jkp!] ¢R0(j!))

!

ki ¡ kd!
2 = §

s
1

jR0(j!)j2 ¡ (kp!)2:

For fixed kp,

M( )
1

(k )2M(!) = jR0(j!)j2 ¡ (kp!)2 ki ¡ kd!
2 = §

p
M(!)

Similar to the PI case, we only need to consider ω’s with M(ω)≥0 
when computing SL.
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Algorithm for PID Controllers

1. Compute S0

2 C t S2. Compute SN

• If deg[N(s)]>deg[D(s)]-1, SN=R3, i.e., SR=

• If deg[N(s)]<deg[D(s)]-1 S =• If deg[N(s)]<deg[D(s)]-1, SN=

• If deg[N(s)]=deg[D(s)]-1, 

S
½

(k k k )jk k k 2 R d jk j ¸
¯̄

an

¯̄¾
where an, bn1 are leading coefficients of D(s) and N(s).

SN =

½
(kp; ki; kd)jkp; ki; kd 2 R and jkdj ¸

¯̄̄ n

bn¡1

¯̄̄¾

n n 1 g ( ) ( )

3. Compute 

4. For a fixed kp, determine the set SR,kp

S1 = S0nSN
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• Determine the set Ω and SL k +Determine the set Ω and SL,kp

Ð+ =

½
! j ! > 0 and M(!) ¸ 0 and

f[
p

M( ) jk ] R (j )g ¾
L(!) =

¼ + argf[
p

M(!) + jkp!] ¢R0(j!)g
!

· L0

¾
S+

L k =

½
(ki; kd) j (ki; kd) =2 SN;kp and 9 ! 2 Ð+

h f h l h (k k )

L;kp

½
( i; d) j ( i; d) = N;kp

such that ki ¡ kd!
2 =

p
M(!)

¾
:

Note that SL,kp+ is a set of straight lines in the (ki,kd) space.

• Determine the sets Ω‐ and SL,kp‐

Compute S S+ [ S¡ d S S nS• Compute

5. By sweeping over kp, the complete set of PID controllers that 
stabilize all plants with delay up to L0: 

SL;kp = S+
L;kp

[ SL;kp
and SR;kp = S1;kpnSL;kp
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SR =
[
kp

SR;kp
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ExampleExample

P (s) =
k

Ts + 1
e¡Ls; L 2 [0; L0]

The stabilizing PID parameters for the delay-free plant are:

S0 =

½
(kp; ki; kd) j kp > ¡1

k
; ki > 0; kd > ¡T

k
or kp < ¡1

k
; ki < 0; kd < ¡T

k

¾½
k k k k

¾

Since deg[D(s)]-deg[N(s)]=1,½ ¯
T

¯¾
SN =

½
(kp; ki; kd) j kp; ki; kd 2 R and jkdj ¸

¯̄̄̄
T

k

¯̄̄̄¾
Assuming k>0 we haveAssuming k>0, we have

S1 = S0nSN =

8<:
©
(kp; ki; kd) j kp > ¡ 1

k
; ki > 0; T

k
> kd > ¡T

k

ª
for T > 0©

(k k k ) j k < 1 k < 0 T < k < T
ª

for T < 0
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: ©
(kp; ki; kd) j kp < ¡ 1

k
; ki < 0; T

k
< kd < ¡T

k

ª
for T < 0
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For T>0 with different k values the stabilizing regions of (k k ) takeFor T>0, with different kp values, the stabilizing regions of (ki,kd) take 
on different but simple shapes:

For -1/k<k ≤1/kFor 1/k<kp≤1/k, 
SR,kp is a trapezoid. 
(a)

For kp>1/k, SR,kp is 
a quadrilateral. (b) 
and (c)and (c)
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ExampleExample

P (s) =

·
s3 ¡ 4s2 + s + 2

s5 + 8s4 + 32s3 + 46s2 + 46s + 17

¸
e¡Ls

fwith L up to L0=1, that is, for all L 0, 1 .

• Fix kp=1, compute the stabilizing ki, kd values for the delay-free 
l t Splant, say S0,kp.

S
Stabilizing region of 
(ki,kd) with kp=1 for 
d l f t

S0;kp=1

delay-free system
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Si d [ ( )] d [ ( )] 1 d• Since deg[D(s)]-deg[N(s)]>1, SN=   and S1 S0.

• For                                      the set of ω where L(ω)≤L0 is

Ω 0 524825 0 742302 2 57318 ∞

ki ¡ kd!
2 =

p
M(!) > 0;

Ω 0.524825, 0.742302 2.57318,  ∞
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L(ω) vs. ωwith  ki ¡ kd!
2 =

p
M(!)
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• The corresponding values of
p

M( )• The corresponding values of

• SL,kp
+ : the straight lines defined by 

p
M(!)

ki ¡ kd!
2 =

p
M(!) for ! 2 Ð+ki kd! =

p
M(!) for ! 2 Ð

p
( )

80

p
M(!) vs: ! with kp = 1
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• For k k 2
p

M( ) 0• For ki ¡ kd!
2 = ¡

p
M(!) < 0;

Ω- = [1.35894, 1.8659] 4.37326,  ∞
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L(!) vs: ! with ki ¡ kd!
2 = ¡

p
M(!)
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Finally, we exclude SL k + and SL k – from S1 k to get SR kFinally, we exclude SL,kp and SL,kp from S1,kp to get SR,kp

Stabilizing region 
of (k k ) withof (ki, kd) with 
kp=1 for plant 
with delay up to 1.

82


