PID Design

- Typically, PID designs rely on adhoc tuning rules developed based on empirical observations and industrial experience.
- The state feedback observer based theory of modern control theory (H₂, H_∞, μ, I₁) optimal control cannot be applied to PID design.

Question:

For a given LTI system, determine whether stabilization by using PID controllers is possible.

$$G(s) = \frac{N(s)}{D(s)}, \qquad C(s) = \frac{sk_p + k_i + k_d s^2}{s(1+sT)}, \quad \text{for } T > 0$$

• The closed-loop characteristic polynomial is: $\delta(s, k_p, k_i, k_d) = s(1 + sT)D(s) + (k_i + k_d s^2) N(s) + k_p sN(s)$

Stabilization Problem using a PID Controller

To determine the values of k_p , k_i , k_d for which the closed-loop characteristic polynomial is Hurwitz.

STABILIZING SET

 $\mathbf{k} := [k_p, k_i, k_d] \quad \text{and let} \quad \mathcal{S}^o := \{\mathbf{k} : \delta(s, k) \in \mathcal{H}\}$

where \mathcal{H} is the set of Hurwitz polynomials of the prescribed degree.

Advantages of obtaining stabilizing set

- Due to the presence of integral action on the error, any controller in the set provides asymptotic tracking and disturbance rejection for step inputs.
- A set of controller parameters satisfying additional requirements can be found as a subset of the stabilizing set.
- If the set is empty, it is not possible to stabilize the plant by a PID controller.

How to find S°

A naive application of the Routh-Hurwitz criterion to $\delta(s, \mathbf{k})$ leads to a description of S^o in terms of highly nonlinear and intractable inequalities.

SIGNATURE FORMULAS

Let p(s) denote a real polynomial of degree n without zeros on the imaginary axis.

$$p(s) := \underbrace{p_0 + p_2 s^2 + \cdots}_{p_{\text{even}}(s^2)} + s \underbrace{\left(p_1 + p_3 s^2 + \cdots\right)}_{p_{\text{odd}}(s^2)}$$

so that $p(j\omega) = p_r(\omega) + jp_i(\omega)$

where $p_r(\omega) = p_{\text{even}}(-\omega^2), \quad p_i(\omega) = \omega p_{\text{odd}}(-\omega^2).$

Definition $\operatorname{sgn}[x] = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0. \end{cases}$

Computation of $\sigma(p)$

$p(j\omega)$ for p(s) of even degree

 $p(j\omega)$ for p(s) of odd degree

$$\begin{aligned} \Delta_0^{\omega_1} \angle p(j\omega) &= \operatorname{sgn}[p_i(0^+)] \big(\operatorname{sgn}[p_r(0) - \operatorname{sgn}[p_r(\omega_1)] \big) \frac{\pi}{2} \\ \Delta_{\omega_1}^{\omega_2} \angle p(j\omega) &= \operatorname{sgn}[p_i(\omega_1^+)] \big(\operatorname{sgn}[p_r(\omega_1) - \operatorname{sgn}[p_r(\omega_2)] \big) \frac{\pi}{2} \\ \Delta_{\omega_2}^{\omega_3} \angle p(j\omega) &= \operatorname{sgn}[p_i(\omega_2^+)] \big(\operatorname{sgn}[p_r(\omega_2) - \operatorname{sgn}[p_r(\omega_3)] \big) \frac{\pi}{2} \\ \Delta_{\omega_3}^{\omega_4} \angle p(j\omega) &= \operatorname{sgn}[p_i(\omega_3^+)] \big(\operatorname{sgn}[p_r(\omega_3) - \operatorname{sgn}[p_r(\omega_4)] \big) \frac{\pi}{2} \\ \Delta_{\omega_4}^{+\infty} \angle p(j\omega) &= \operatorname{sgn}[p_i(\omega_4^+)] \big(\operatorname{sgn}[p_r(\omega_4) - \operatorname{sgn}[p_r(\infty)] \big) \frac{\pi}{2} \end{aligned}$$

and

$$sgn[p_i(\omega_1^+)] = -sgn[p_i(0^+)]$$

$$sgn[p_i(\omega_2^+)] = -sgn[p_i(\omega_1^+)] = +sgn[p_i(0^+)]$$

$$sgn[p_i(\omega_3^+)] = +sgn[p_i(\omega_2^+)] = +sgn[p_i(0^+)]$$

$$sgn[p_i(\omega_4^+)] = -sgn[p_i(\omega_3^+)] = -sgn[p_i(0^+)]$$

Note that 0, ω_1 , ω_2 , ω_4 are the real zeros of $p_i(\omega)$ of odd multiplicity whereas ω_3 is a real zero of even multiplicity.

$$\begin{split} \Delta_0^{\infty} \angle p(j\omega) &= \Delta_0^{\omega_1} \angle p(j\omega) + \Delta_{\omega_1}^{\omega_2} \angle p(j\omega) + \Delta_{\omega_2}^{\omega_4} \angle p(j\omega) + \Delta_{\omega_4}^{\infty} \angle p(j\omega) \\ &= \frac{\pi}{2} \operatorname{sgn}[p_i(0^+)] \big(\operatorname{sgn}[p_r(0)] - \operatorname{sgn}[p_r(\omega_1)] \big) - \operatorname{sgn}[p_i(0^+)] \big(\operatorname{sgn}[p_r(\omega_1)] - \operatorname{sgn}[p_r(\omega_2)] \big) \\ &+ \operatorname{sgn}[p_i(0^+)] \big(\operatorname{sgn}[p_r(\omega_2)] - \operatorname{sgn}[p_r(\omega_4)] \big) - \operatorname{sgn}[p_i(0^+)] \big(\operatorname{sgn}[p_r(\omega_4)] - \operatorname{sgn}[p_r(\infty)] \big). \end{split}$$

We have

$$\Delta_0^{\infty} \angle p(j\omega) = \frac{\pi}{2} \operatorname{sgn}[p_i(0^+)] \left(\operatorname{sgn}[p_r(0)] - 2\operatorname{sgn}[p_r(\omega_1)] + 2\operatorname{sgn}[p_r(\omega_2)] - 2\operatorname{sgn}[p_r(\omega_4)] + \operatorname{sgn}[p_r(\omega_4)] \right).$$

From this observation, we have the following theorem.

Theorem

Let p(s) be a polynomial with real coefficients, of degree n, without zeros on the imaginary axis. Write

 $p(j\omega) = p_r(\omega) + jp_i(\omega)$

and let $\omega_0, \omega_1, \omega_3, ..., \omega_{l-1}$ denote the real nonnegative zeros of $p_i(\omega)$ with odd multiplicities with $\omega_0=0$. Then

If n is even

$$\sigma(p) = \operatorname{sgn}[p_i(0^+)] \left(\operatorname{sgn}[p_r(0)] + 2 \sum_{j=1}^{l-1} (-1)^j \operatorname{sgn}[p_r(\omega_j)] + (-1)^l \operatorname{sgn}[p_r(\infty)] \right).$$
If n is odd

$$\sigma(p) = \operatorname{sgn}[p_i(0^+)] \left(\operatorname{sgn}[p_r(0)] + 2 \sum_{j=1}^{l-1} (-1)^j \operatorname{sgn}[p_r(\omega_j)] \right).$$

COMPUTATION OF STABILIZING SET

• Plant and Controller

$$P(s) = \frac{N(s)}{D(s)}, \qquad C(s) = \frac{k_p s + k_i + k_d s^2}{s(1+sT)}, \quad T > 0.$$

where deg[D(s)] = n > deg[N(s)] = m

The closed-loop characteristic polynomial

 $\delta(s) = sD(s)(1+sT) + \left(k_ps + k_i + k_ds^2\right)N(s)$

• Define $\nu(s) := \delta(s)N(-s)$

$$\nu(s) = \nu_{\text{even}}(s^2, k_i, k_d) + s\nu_{\text{odd}}(s^2, k_p)$$

Theorem The closed-loop system is stable if and only if $\sigma(\nu) = n - m + 2 + 2z^+$.

Proof

Closed-loop stability is equivalent to the requirement that the n+2 zeros of $\delta(s)$ lie in the open LHP. This is equivalent to

$$\sigma(\delta) = n+2$$

and to $\sigma(\nu) = n + 2 + z^+ - z^-$ = $n + 2 + z^+ - (m - z^+)$ = $(n - m) + 2 + 2z^+$.

Procedure of Calculating Stabilizing Set

Step 1: Fix $k_p = k_p^*$ and let $0 < \omega_1 < \omega_2 < ... < \omega_{l-1}$ denote the real, positive, finite frequencies which are zeros of $\nu_{\text{odd}}(-\omega^2, k_n^*) = 0$

of odd multiplicities. Let ω_0 :=0 and ω_1 := ∞ .

Step 2: Write
$$j = \operatorname{sgn} \left[v_{\text{odd}}(0, k_p^*) \right]$$

and determine strings of integers, i_0 , i_1 , ... such that:

If
$$n+m$$
 is even
 $j(i_0 - 2i_1 + 2i_2 + \dots + (-1)^{l-1}2i_{l-1} + (-1)^l i_l) = n - m + 2 + 2z^+$
If $n+m$ is odd
 $j(i_0 - 2i_1 + 2i_2 + \dots + (-1)^{l-1}2i_{l-1}) = n - m + 2 + 2z^+$

Step 3: Let I_1 , I_2 , I_3 , ... denote distinct strings $\{i_0, i_1, ...\}$ satisfying the expression in step 2. Then the stabilizing sets in k_i , k_d space, for $k_p = k_p^*$ are given by the linear inequalities

 $\nu_r \left(-\omega_t^2, k_i, k_d \right) i_t > 0$

where the i_t range over each of the string $I_1, I_2, ...$

Step 4: For each string I_{j} , the expression in step 3 generates a convex stability set $S_{j}(k_{p}^{*})$ and the complete set for fixed k_{p}^{*} is the union of these convex sets

 $\mathcal{S}(k_p^*) = \cup_j \mathcal{S}_j(k_p^*).$

Step 5: The complete stabilizing set in (k_p, k_i, k_d) space can be found by sweeping k_p over the real axis and repeating the steps 1-4.

NOTE:

- It is easy to see that the range of sweeping k_p can be restricted to those values such that the number of roots ℓ-1 can satisfy the expressions in Step 2.
- From this consideration, we found that kp needs to be swept over those ranges where $\nu_{\text{odd}}(-\omega^2, k_p^*) = 0$ is satisfied with ℓ -1 given by:

Remark: If the PID controller with pure derivative action is used (T=0), it is easy to see that the signature requirement for stability becomes

 $\sigma(\nu) = n - m + 1 + 2z^+.$

Example: Determine stabilizing PID gains for the plant:

 $P(s) = \frac{N(s)}{D(s)} = \frac{s^3 - 2s^2 - s - 1}{s^6 + 2s^5 + 32s^4 + 26s^3 + 65s^2 - 8s + 1}.$

- Using T=0, the closed-loop characteristic polynomial is $\delta(s, k_p, k_i, k_d) = sD(s) + (k_i + k_d s^2)N(s) + k_p sN(s).$
- Here *n=6* and *m=3*, we have

$$N_e(s^2) = -2s^2 - 1, \qquad N_o(s^2) = s^2 - 1,$$

$$D_e(s^2) = s^6 + 32s^4 + 65s^2 + 1, \qquad D_o(s^2) = 2s^4 + 26s^2 - 8,$$

and

$$\nu(s) = \delta(s, k_p, k_i, k_d) N(-s)$$

$$= \left[s^2 \left(-s^8 - 35s^6 - 87s^4 + 54s^2 + 9 \right) + \left(k_i + k_d s^2 \right) \left(-s^6 + 6s^4 + 3s^2 + 1 \right) \right]$$

$$+ s \left[\left(-4s^8 - 89s^6 - 128s^4 - 75s^2 - 1 \right) + k_p \left(-s^6 + 6s^4 + 3s^2 + 1 \right) \right]$$

$$\nu(j\omega, k_p, k_i, k_d) = \left[p_1(\omega) + \left(k_i - k_d\omega^2\right)p_2(\omega)\right] + j\left[q_1(\omega) + k_pq_2(\omega)\right]$$

where

$$p_{1}(\omega) = \omega^{10} - 35\omega^{8} + 87\omega^{6} + 54\omega^{4} - 9\omega^{2}$$

$$p_{2}(\omega) = \omega^{6} + 6\omega^{4} - 3\omega^{2} + 1$$

$$q_{1}(\omega) = -4\omega^{9} + 89\omega^{7} - 128\omega^{5} + 75\omega^{3} - \omega$$

$$q_{2}(\omega) = \omega^{7} + 6\omega^{5} - 3\omega^{3} + \omega.$$

- We find that $z^+=1$ so it is required for stability that $\sigma(\nu) = n - m + 1 + 2z^+ = 6.$
- Since deg[ν(s)] is even, q(ω) must have at least two positive real roots of odd multiplicity. So the allowable range for k_p is (-24.7513, 1). Pick k_p=-18.

$$q(\omega, -18) = q_1(\omega) - 18q_2(\omega) = -4\omega^9 + 71\omega^7 - 236\omega^5 + 129\omega^3 - 19\omega$$

17

 The real, non-negative, distinct finite zeros of q(ω,-18) with odd multiplicities are

 $\omega_0 = 0, \quad \omega_1 = 0.5195, \quad \omega_2 = 0.6055, \quad \omega_3 = 1.8804, \quad \omega_4 = 3.6848.$

- Define $\omega_5 = \infty$. sgn[q(0, -18)] = -1
- It follows that every admissible string must satisfy

 $\{i_0 - 2i_1 + 2i_2 - 2i_3 + 2i_4 - i_5\} \cdot (-1) = 6$

and the admissible strings are

$$\begin{aligned}
\mathcal{I}_1 &= \{-1, -1, -1, 1, -1, 1\} \\
\mathcal{I}_2 &= \{-1, 1, 1, 1, -1, 1\} \\
\mathcal{I}_3 &= \{-1, 1, -1, -1, -1, 1\} \\
\mathcal{I}_4 &= \{-1, 1, -1, 1, 1, 1\} \\
\mathcal{I}_5 &= \{1, 1, -1, 1, -1, -1\}.
\end{aligned}$$

For I_t, it follows that the stabilizing (k_i, k_d) values corresponding to k_p=-18 must satisfy the string of inequalities:

$$p_{1}(\omega_{0}) + (k_{i} - k_{d}\omega_{0}^{2}) p_{2}(\omega_{0}) < 0$$

$$p_{1}(\omega_{1}) + (k_{i} - k_{d}\omega_{1}^{2}) p_{2}(\omega_{1}) < 0$$

$$p_{1}(\omega_{2}) + (k_{i} - k_{d}\omega_{2}^{2}) p_{2}(\omega_{2}) < 0$$

$$p_{1}(\omega_{3}) + (k_{i} - k_{d}\omega_{3}^{2}) p_{2}(\omega_{3}) > 0$$

$$p_{1}(\omega_{4}) + (k_{i} - k_{d}\omega_{4}^{2}) p_{2}(\omega_{4}) < 0$$

$$p_{1}(\omega_{5}) + (k_{i} - k_{d}\omega_{5}^{2}) p_{2}(\omega_{5}) > 0$$

• Substituting for ω_0 , ω_1 , ω_2 , ω_3 , ω_4 , ω_5 , we have

	$k_i < 0$		$k_i < 0$
	$k_i - 0.2699k_d < -4.6836$		$k_i - 0.2699k_d > -4.6836$
$S_1: \langle$	$k_i - 0.3666k_d < -10.0797$	\mathcal{S}_2 : 〈	$k_i - 0.3666k_d > -10.0797$
	$k_i - 3.5358k_d > 3.912$		$k_i - 3.5358k_d > 3.912$
	$k_i - 13.5777k_d < 140.2055$		$k_i - 13.5777k_d < 140.2055$

$$\mathcal{S}_3 = \mathcal{S}_4 = \mathcal{S}_5 = \emptyset$$

The stabilizing set of (k_i, k_d) when $k_p=-18$

The stabilizing set of (k_p, k_i, k_d)

PID DESIGN WITH PERFORMANCE REQUIREMENTS

Signature Formulas for Complex Polynomials

Consider the polynomial c(s) with complex coefficients and let c(s) have no $j\omega$ axis zeros. Let

 $c(j\omega) = p(\omega) + jq(\omega)$

where $p(\omega)$ and $q(\omega)$ are polynomials with real coefficients. Write

$$j_{-} = \operatorname{sgn}[q(-\infty)], \quad j_{+} = \operatorname{sgn}[q(\infty)] \quad \text{and} \quad i_{k} = \operatorname{sgn}[p(\omega_{k})]$$

Proof: For deg[p]>deg[q], $c(j\omega)$ approaches the real axis as $|\omega|$ goes to ∞ . Thus,

 $\Delta_{-\infty}^{+\infty} \angle c(j\omega) = \Delta_{-\infty}^{\omega_1} \angle c(j\omega) + \Delta_{\omega_1}^{\omega_2} \angle c(j\omega) + \dots + \Delta_{\omega_{l-1}}^{+\infty} \angle c(j\omega)$

and

$$\Delta_{-\infty}^{\omega_1} \angle c(j\omega) = \frac{\pi}{2} j_-(i_0 - i_1)$$

$$\Delta_{\omega_k}^{\omega_{k+1}} \angle c(j\omega) = \frac{\pi}{2} j_-(-1)^k (i_k - i_{k+1}), \quad k = 0, 1, \cdots, l-1$$

Using $\Delta_{-\infty}^{+\infty} \angle c(j\omega) = \pi(l-r), \quad \sigma(c) := l-r$ $\sigma(c) = \frac{1}{2}j_{-}\left\{i_{0} - 2i_{1} + 2i_{2} + \dots + (-1)^{l-1}2i_{l-1} + (-1)^{l}i_{l}\right\}$

From $j_{-} = j_{+}(-1)^{l-1}$, $\sigma(c) = \frac{1}{2}j_{+}(-1)^{l-1}\left\{i_{0} - 2i_{1} + \dots + (-1)^{l-1}2i_{l-1} + (-1)^{l}i_{l}\right\}$

The case $deg[q] \ge deg[p]$ may be proved similarly.

Complex PID Stabilization Algorithm

- Consider $c(s, k_p, k_i, k_d) = L(s) + (k_d s^2 + k_p s + k_i) M(s)$
- Define $\nu(j\omega) = c(j\omega, k_p, k_i, k_d)M^*(j\omega) = p(\omega, k_i, k_d) + jq(\omega, k_p)$ where $p(\omega, k_i, k_d) = p_1(\omega) + (k_i - k_d\omega^2)p_2(\omega)$

Step 1: Compute $p_1(\omega)$, $p_2(\omega)$, $q_1(\omega)$, $q_2(\omega)$

Step 2: Determine the allowable ranges of k_p such that $q(\omega, k_p)$ has at least

real, distinct finite zeros with odd multiplicities.

Step 3: For fixed $k_p = k_p^*$, solve the real, distinct finite zeros of $q(\omega, k_p^*)$ with odd multiplicities and denote them by $\omega_1 < \omega_2 < ... < \omega_{l-1}$ and let $\omega_0 = -\infty$ and $\omega_l = \infty$;

Step 4: Find sequences of integers i_0 , i_1 , i_2 , ..., il with $i_t \in \{-1, 1\}$, for all other $t = 0, 1, \dots, l$.

such that

$$n - (l(M(s)) - r(M(s))) = \begin{cases} \frac{1}{2} \left\{ i_0 \cdot (-1)^{l-1} + 2 \sum_{r=1}^{l-1} i_r \cdot (-1)^{l-1-r} - i_l \right\} \cdot \operatorname{sgn}[q(\infty, k_p)] & \text{if } \operatorname{deg}[p] > \operatorname{deg}[q] \\ \frac{1}{2} \left\{ 2 \sum_{r=1}^{l-1} i_r \cdot (-1)^{l-1-r} \right\} \cdot \operatorname{sgn}[q(\infty, k_p)] & \text{if } \operatorname{deg}[q] \ge \operatorname{deg}[p] \end{cases}$$

Step 5: The stabilizing sets in k_i, k_d space are given by

 $p(\omega_t, k_i \cdot k_d)i_t > 0$

where i_t are taken from the admissible strings satisfying the signature condition for stability.

Step 6: Repeat the procedure by updating k_p in the admissible range.

PID Design with Guaranteed Gain and Phase Margins

Let A_m and θ_m denote the desired gain and phase margins. Then the PID gain value (k_p , k_i , k_d) must satisfy the following conditions.

1.
$$sD(s) + A(k_d s^2 + k_p s + k_i) N(s) \in \mathcal{H}$$
 for all $A \in [1, A_m]$

2.
$$sD(s) + e^{-j\theta} \left(k_d s^2 + k_p s + k_i \right) N(s) \in \mathcal{H} \text{ for all } \theta \in [0, \theta_m]$$

Example

$$G(s) = \frac{N(s)}{D(s)} = \frac{2s - 1}{s^4 + 3s^3 + 4s^2 + 7s + 9}$$

Determining PID gains that provide a gain margin Am \geq 3.0 and a phase margin $\theta_m \geq 40^\circ$ is equivalent to find PID values satisfying

1.
$$s(s^4 + 3s^3 + 4s^2 + 7s + 9) + A(k_ds^2 + k_ps + k_i)(2s - 1) \in \mathcal{H}$$
 for all $A \in [1, 3.0]$
2. $s(s^4 + 3s^3 + 4s^2 + 7s + 9) + e^{-j\theta}(k_ds^2 + k_ps + k_i)(2s - 1) \in \mathcal{H}$ for all $\theta \in [0^\circ, 40^\circ]$

The set (k_p, k_i, k_d) values for which the resulting closed-loop system achieves a gain margin greater than 3.0 and a phase margin greater than 40 degree.

PID Design with an H_{\infty} criterion

Find PID controller for which the closed-loop system is internally stable and the H_{∞} norm of a certain closed-loop transfer function is less than a prescribed level.

$$S(s) = \frac{1}{1 + C(s)G(s)}$$

• The complementary sensitivity function

$$T(s) = \frac{C(s)G(s)}{1 + C(s)G(s)}$$

• The input sensitivity function

$$U(s) = \frac{C(s)}{1 + C(s)G(s)}$$

All these transfer functions can be represented in the following general form:

$$T_{cl}(s, k_p, k_i, k_d) = \frac{A(s) + (k_d s^2 + k_p s + k_i) B(s)}{sD(s) + (k_d s^2 + k_p s + k_i) N(s)}$$

where A(s) and B(s) are some real polynomials.

 For the transfer function Tcl(s,k_p,k_i,k_d) and a given γ > 0, the standard H_∞ performance specification usually takes the form:

$$||W(s)T_{cl}(s,k_p,k_i,k_d)||_{\infty} < \gamma, \qquad W(s) = \frac{W_n(s)}{W_d(s)}$$

where W(s) is a stable frequency-dependent weighting function that is selected to capture the desired design objectives.

Define

$$\delta(s, k_p, k_i, k_d) \stackrel{\Delta}{=} sD(s) + \left(k_i + k_p s + k_d s^2\right) N(s)$$

$$\phi(s, k_p, k_i, k_d, \gamma, \theta) \stackrel{\Delta}{=} \left[sW_d(s)D(s) + \frac{1}{\gamma}e^{j\theta}W_n(s)A(s)\right]$$

$$+ \left(k_d s^2 + k_p s + k_i\right) \left[W_d(s)N(s) + \frac{1}{\gamma}e^{j\theta}W_n(s)B(s)\right]$$

• For a given $\gamma > 0$ there exist PID gains such that $\|W(s)T_{cl}(s,k_p,k_i,k_d)\|_{\infty} < \gamma$

if and only if the following conditions hold:

- (1) $\delta(s, k_p, k_i, k_d) \in \mathcal{H};$
- (2) $\phi(s, k_p, k_i, k_d, \gamma, \theta) \in \mathcal{H} \text{ for all } \theta \in [0, 2\pi);$
- (3) $||W(\infty)T_{cl}(\infty, k_p, k_i, k_d)|| < \gamma$

Example

• Plant and controller

$$G(s) = \frac{N(s)}{D(s)} = \frac{s-1}{s^2 + 0.8s - 0.2}, \qquad C(s) = \frac{k_d s^2 + k_p s + k_i}{s}$$

• Determine all stabilizing PID gain values for which

$$\left\|W(s)T(s,k_p,k_i,k_d)\right\|_{\infty} < 1,$$

where $T(s,k_p,k_i,k_d)$ is the complementary sensitivity function:

$$T(s, k_p, k_i, k_d) = \frac{(k_d s^2 + k_p s + k_i) (s - 1)}{s (s^2 + 0.8s - 0.2) + (k_d s^2 + k_p s + k_i) (s - 1)}$$

and the weight W(s) is chosen as a high pass filter:

$$W(s) = \frac{s+0.1}{s+1}$$

Solution

 (k_p,k_i,k_d) values meeting the H_{∞} performance constraints exist iff the following conditions hold:

(1)
$$\delta(s, k_p, k_i, k_d) = s(s^2 + 0.8s - 0.2) + (k_d s^2 + k_p s + k_i)(s - 1) \in \mathcal{H};$$

(2)
$$\phi(s, k_p, k_i, k_d, 1, \theta) = s(s+1)(s^2 + 0.8s - 0.2)$$

 $+ (k_d s^2 + k_p s + k_i) [(s+1)(s-1) + e^{j\theta}(s+0.1)(s-1)] \in \mathcal{H} \text{ for all } \theta \in [0, 2\pi];$
(3) $|W(\infty)T(\infty, k_p, k_i, k_d)| = \left|\frac{k_d}{k_d + 1}\right| < 1.$

For the condition (1), with a fixed k_p=-0.35, determine all values of (k_i,k_d) by using the standard algorithm with

$$L(s) = s(s^2 + 0.8s - 0.2)$$
 and $M(s) = s - 1$

This set is denoted by $S_{(1,-0.35)}$

• For the condition (2), fixing k_p and any fixed $\theta \in [0, 2\pi)$, by setting

$$L(s) = s(s+1) (s^2 + 0.8s - 0.2),$$

$$M(s,\theta) = (s+1)(s-1) + e^{j\theta}(s+0.1)(s-1)$$

and using the complex stabilization algorithm we can determine the set of (k_i, k_d) values. Let this set be denoted by $S_{(2,-0.35,\theta)}$

 By keeping k_p fixed, sweeping over θ∈ [0, 2π) at each stage, we can determine the set for which condition (2) is satisfied. This set is denoted by (K_p=-0.35)

$$S_{(2,-0.35)} = \bigcap_{\theta \in [0,2\pi)} S_{(2,-0.35,\theta)}$$

• For the condition (3), we have

$$\mathcal{S}_{(3,-0.35)} = \{ (k_i, k_d) : k_i \in \mathcal{R}, k_d > -0.5 \}$$

• For $k_p = -0.35$, the set of (k_i, k_d) values is

 $S_{(-0.35)} = \bigcap_{i=1,2,3} S_{(i,-0.35)}$

- Using root loci, it is determined that a necessary condition for the existence of stabilizing (k_i,k_d) values is k_p∈(-0.5566,-0.2197).
- By sweeping over this range of k_p and repeating the procedure, we have the set (k_p,k_i,k_d).

The set $S_{(1,-0.35)}$

The set $\mathcal{S}_{(2,-0.35)}=\cap_{ heta\in[0,2\pi)}\mathcal{S}_{(2,-0.35, heta)}$

The set of stabilizing (k_p, k_i, k_d) values for which $|W(s)T(s, k_p, k_i, k_d)|_{\infty} < 1$

PID Design for H_∞ Robust Performance

• Consider the following robust performance specification:

$$|||W_1(s)S(s)| + |W_2(s)T(s)|||_{\infty} < 1$$

where

$$W_1(s) = \frac{N_{W_1}(s)}{D_{W_1}(s)}$$
 and $W_2(s) = \frac{N_{W_2}(s)}{D_{W_2}(s)}$

are stable weighting functions, and S(s) and T(s) are the sensitivity and the complementary sensitivity functions, respectively.

• The characteristic polynomial is

$$\delta(s, k_p, k_i, k_d) \stackrel{\Delta}{=} sD(s) + \left(k_i + k_p s + k_d s^2\right) N(s)$$

Define the complex polynomial

 $\psi(s, k_p, k_i, k_d, \theta, \phi) \stackrel{\Delta}{=} sD_{W_1}(s)D_{W_2}(s)D(s) + e^{j\theta}sN_{W_1}(s)D_{W_2}(s)D(s)$ $+ (k_ds^2 + k_ps + k_i) \cdot [D_{W_1}(s)D_{W_2}(s)N(s) + e^{j\phi}D_{W_1}(s)N_{W_2}(s)N(s)]$

- The problem of synthesizing PID controllers for robust performance can be converted in to problem of determining (kp,ki,kd) for which the following conditions hold:
- (1) $\delta(s, k_p, k_i, k_d) \in \mathcal{H};$

(2) $\psi(s, k_p, k_i, k_d, \theta, \phi) \in \mathcal{H} \text{ for all } \theta \in [0, 2\pi) \text{ and for all } \phi \in [0, 2\pi);$

- (3) $|W_1(\infty)S(\infty)| + |W_2(\infty)T(\infty)| < 1.$
- The performance specification

 $|||W_1(s)S(s)| + |W_2(s)T(s)|||_{\infty} < 1$

Example

- Plant $G(s) = \frac{N(s)}{D(s)} = \frac{s 15}{s^2 + s 1}$
- The sensitivity and complementary sensitivity functions are

$$S(s, k_p, k_i, k_d) = \frac{s(s^2 + s - 1)}{s(s^2 + s - 1) + (k_d s^2 + k_p s + k_i)(s - 15)},$$

$$T(s, k_p, k_i, k_d) = \frac{(k_d s^2 + k_p s + k_i)(s - 15)}{s(s^2 + s - 1) + (k_d s^2 + k_p s + k_i)(s - 15)}.$$

• The weighting functions are chosen as

$$W_1(s) = \frac{0.2}{s+0.2}$$
 and $W_2(s) = \frac{s+0.1}{s+1}$

• The stabilizing (k_p,k_i,k_d) values meeting the performance specification exist iff the following conditions hold:

(1)
$$\delta(s, k_p, k_i, k_d) = s (s^2 + s - 1) + (k_d s^2 + k_p s + k_i) (s - 15) \in \mathcal{H};$$

(2)
$$\psi(s, k_p, k_i, k_d, \theta, \phi) = s(s + 0.2)(s + 1) (s^2 + s - 1) + (k_d s^2 + k_p s + k_i) + e^{j\theta} s(0.2)(s + 1) (s^2 + s - 1) + (k_d s^2 + k_p s + k_i) + [(s + 0.2)(s + 1)(s - 15) + e^{j\phi}(s + 0.2)(s + 0.1)(s - 15)] \in \mathcal{H};$$

for all $\theta \in [0, 2\pi)$ and for all $\phi \in [0, 2\pi);$

(3) $|W_1(\infty)S(\infty,k_p,k_i,k_d)| + |W_2(\infty)T(\infty,k_p,k_i,k_d)| = \left|\frac{k_d}{k_d+1}\right| < 1.$

The set of (k_p, k_i, k_d) values for which $|||W_1(s)S(s, k_p, k_i, k_d)| + |W_2(s)T(s, k_p, k_i, k_d)|||_{\infty} < 1$