
A Fast Integrated Planning and Control Framework for 
Autonomous Driving based on Reinforcement Learning

Safe and efficient autonomous driving
• Long-term motion planning is desired for 

safety, feasibility and passengers’ comfort
• Realtime planning is crucial for autonomous 

driving due to limited computation time

Liting Sun, Cheng Peng, Wei Zhan, and Masayoshi Tomizuka
MSC Lab, Mechanical Engineering Department, UC Berkeley

ego vehicle

surrouding vehicle

surrouding vehicle

Hierarchical Structure 

Generalization

Motivation: Long-term Planning VS Realtimeness? Can we achieve both? 

Optimization-based method (eg., MPC) Learning-based method

• Guaranteed safety, feasibility
• Intuitive interpretation
• Easy incorporation of different constraints

Pros:

Cons:
• Nonlinear nonconvex optimization
• Pre-defined objectives
• Exponentially increase of computation load with the 

planning horizon length

• Fast computation
• Mimic human behavior (learn from data)

Cons:
• Non-intuitive interpretation
• Hard to guarantee hard constraints
• Rich data requirement

Pros:

Long-term rough planning: learning-based
Short-term precise execution: optimization-based
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Expert policy: long-term MPC

Feature selection:
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Reinforcement learning:

Advantages:
• Short training time (~ 2-3 mins)
• Fast policy updates
• Improved robustness to real world tests

Results
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Overtaking:

0 2 4 6 8 10 12 14 16 18
-0.5

0
0.5

1

y 
(m

)

Path in overtaking maneuver

0 2 4 6 8 10 12 14 16 18
x-direction distance (m)

0

0.5

1

ve
lo

ci
ty

 (m
/s) Velocity profile in overtaking maneuver

ego-vehicle speed
speed limit

0 2 4 6 8 10 12 14 16 18
-0.5

0
0.5

1

y 
(m

)

Path in overtaking maneuver with short-horizon MPC
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Car-following:
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Path in car-following scenario
Straight-going:
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