

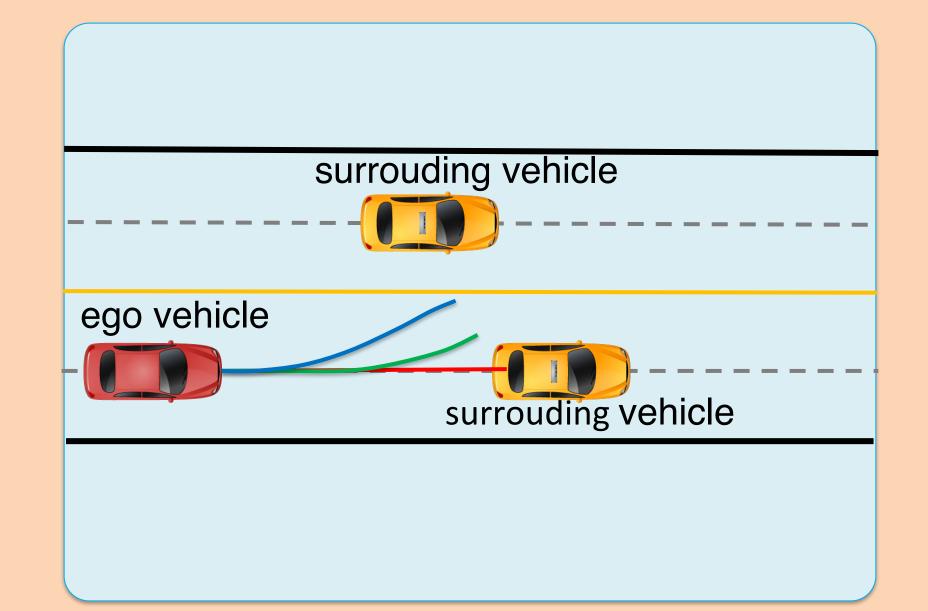
A Fast Integrated Planning and Control Framework for Autonomous Driving based on Reinforcement Learning

Liting Sun, Cheng Peng, Wei Zhan, and Masayoshi Tomizuka MSC Lab, Mechanical Engineering Department, UC Berkeley

Motivation: Long-term Planning VS Realtimeness? Can we achieve both?

Safe and efficient autonomous driving

- Long-term motion planning is desired for safety, feasibility and passengers' comfort
- Realtime planning is crucial for autonomous driving due to limited computation time



Optimization-based method (eg., MPC)

$$\min_{x \in \mathcal{R}^n} f(x)$$

s.t. $g(x) \leq 0$

Pros:

- Guaranteed safety, feasibility
- Intuitive interpretation
- Easy incorporation of different constraints

Cons:

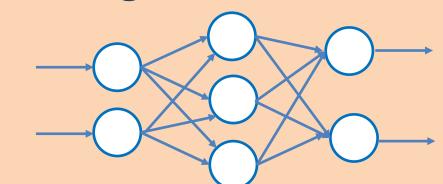
- Nonlinear nonconvex optimization
- Pre-defined objectives

Supervised Learning

Expert policy: long-term MPC

Exponentially increase of computation load with the planning horizon length

Learning-based method



Pros:

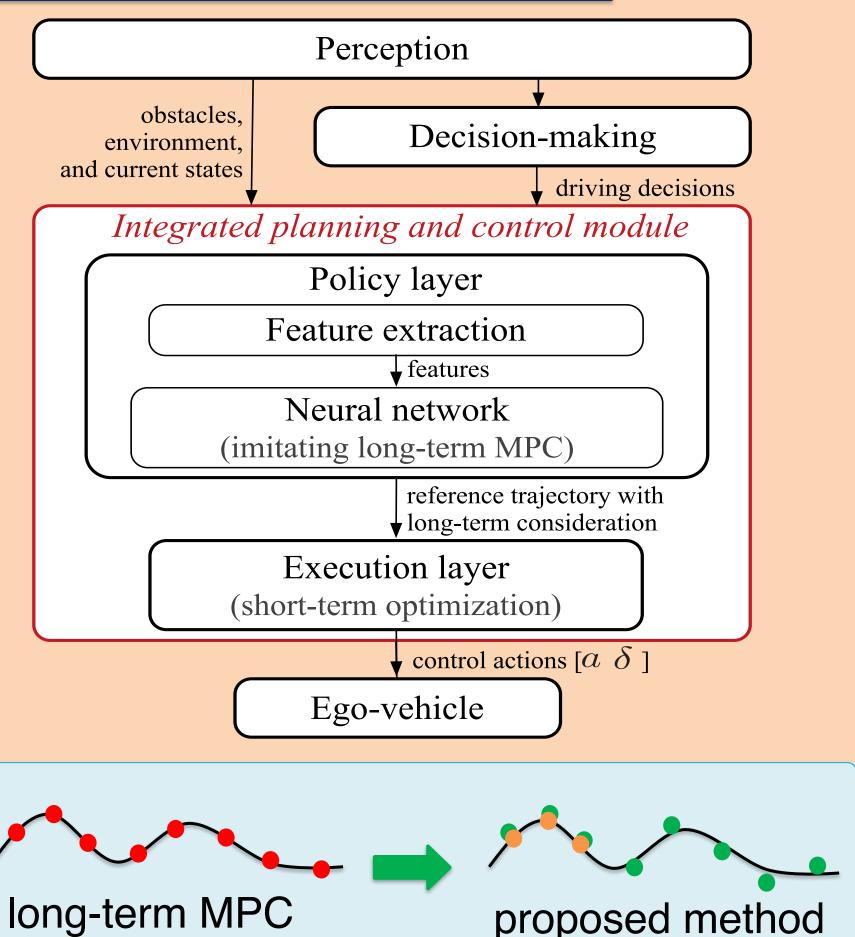
- Fast computation
- Mimic human behavior (learn from data)

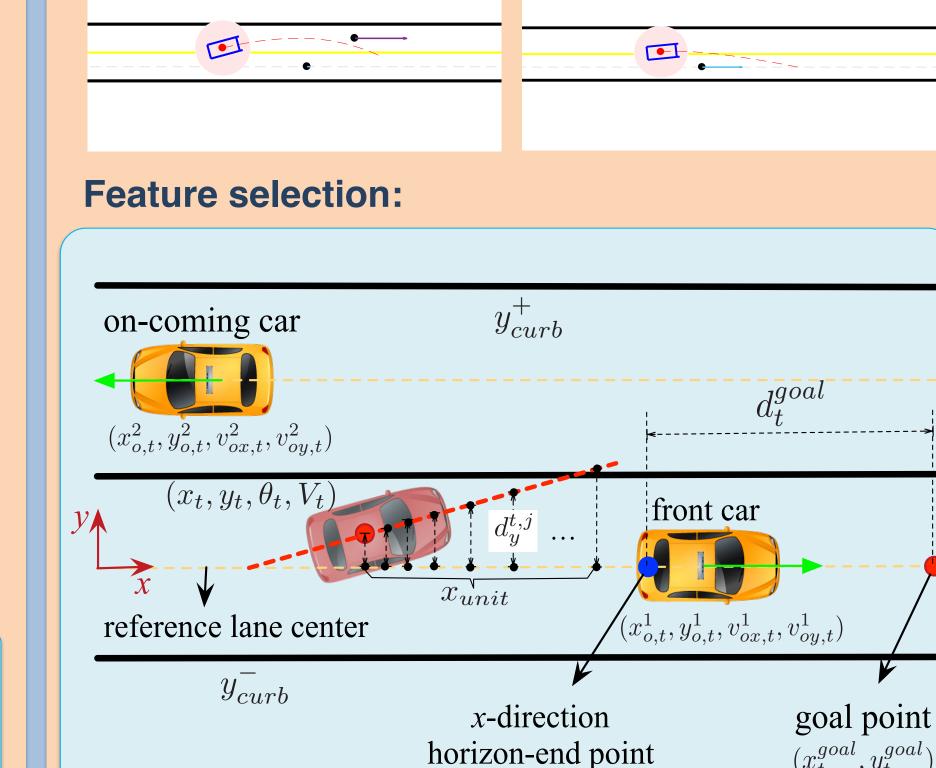
Cons:

- Non-intuitive interpretation
- Hard to guarantee hard constraints
- Rich data requirement

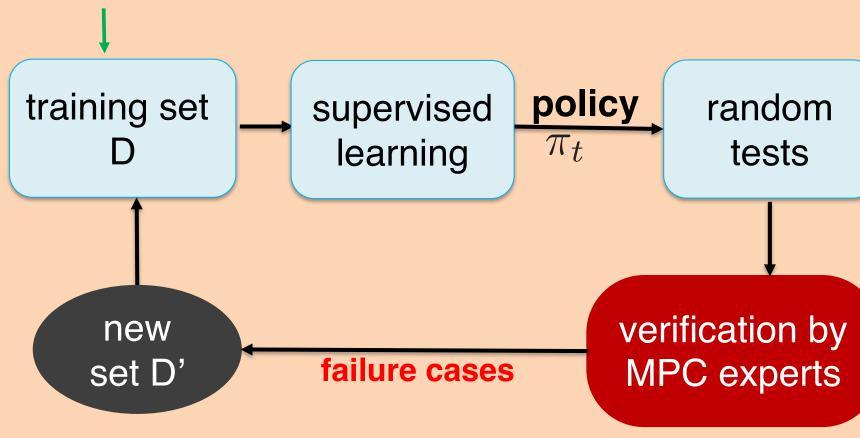
Long-term rough planning: learning-based Short-term precise execution: optimization-based

Hierarchical Structure





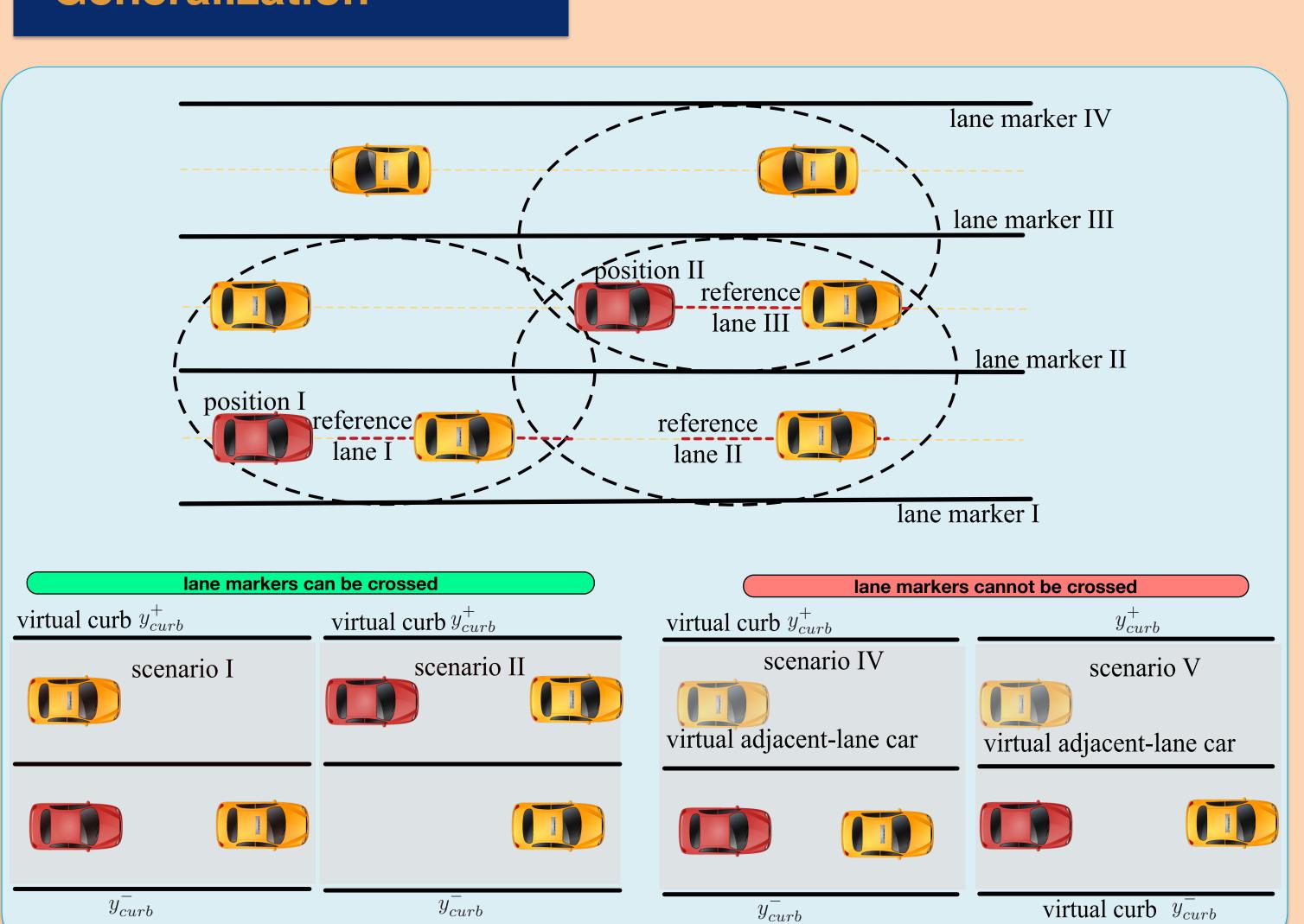
Reinforcement learning: initialized by simulations training set supervised policy random



Advantages:

- Short training time (~ 2-3 mins)
- Fast policy updates
- Improved robustness to real world tests

Generalization



Results

Autonomous Driving", submitted to IROS2017.

