Digital PID Controller Design
Digital PID Controller Design

- Plant and Controller

\[G(z) = \frac{N(z)}{D(z)} , \quad C(z) = \frac{N_C(z)}{D_C(z)} . \]

- The characteristic polynomial of the closed loop system

\[\Pi(z) := D_C(z)D(z) + N_C(z)N(z) \]
TCHEBYSHEV REPRESENTATION AND ROOT CLUSTERING

Tchebyshev representation of real polynomials

- Consider a real polynomial $P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$

- The image of $P(z)$ evaluated on the circle C_ρ of radius ρ, centered at the origin is:

\[
\{ P(z) : z = \rho e^{j\theta}, \quad 0 \leq \theta \leq 2\pi \}.
\]

- As the coefficients a_i are real $P(\rho e^{j\theta})$ and $P(\rho e^{-j\theta})$ are conjugate complex numbers, and so it suffices to determine the image of the upper half of the circle:

\[
\{ P(z) : z = \rho e^{j\theta}, \quad 0 \leq \theta \leq \pi \}.
\]
• Since \(z^k \big|_{z=\rho e^{i\theta}} = \rho^k (\cos k\theta + j \sin k\theta) \),

\[
P (\rho e^{j\theta}) = \left(a_n \rho^n \cos n\theta + \cdots + a_1 \rho \cos \theta + a_0 \right) + j \left(a_n \rho^n \sin n\theta + \cdots + a_1 \rho \sin \theta \right)
\]

\[
= \bar{R}(\rho, \theta) + j \bar{I}(\rho, \theta).
\]

• Consider \((\rho e^{j\theta})^k = \rho^k \cos k\theta + j \rho^k \sin k\theta\)

• Write \(u = -\cos \theta \) and define the generalized Tchebyshev polynomials as follows:

\[
c_k(u, \rho) = \rho^k c_k(u), \quad s_k(u, \rho) = \rho^k s_k(u), \quad k = 0, 1, 2 \cdots
\]

and note that

\[
s_k(u, \rho) = -\frac{1}{k} \cdot \frac{d}{du} [c_k(u, \rho)], \quad k = 1, 2, \cdots
\]

\[
c_{k+1}(u, \rho) = -\rho u c_k(u, \rho) - \left(1 - u^2\right) \rho s_k(u, \rho), \quad k = 1, 2, \cdots
\]
The generalized Tchebyshev polynomials are for \(k = 1, \ldots, 5 \):

<table>
<thead>
<tr>
<th>(k)</th>
<th>(c_k(u, \rho))</th>
<th>(s_k(u, \rho))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(-\rho u)</td>
<td>(\rho)</td>
</tr>
<tr>
<td>2</td>
<td>(\rho^2 (2u^2 - 1))</td>
<td>(-2\rho^2 u)</td>
</tr>
<tr>
<td>3</td>
<td>(\rho^3 (-4u^3 + 3u))</td>
<td>(\rho^3 (4u^2 - 1))</td>
</tr>
<tr>
<td>4</td>
<td>(\rho^4 (8u^4 - 8u^2 + 1))</td>
<td>(\rho^4 (-8u^3 + 4u))</td>
</tr>
<tr>
<td>5</td>
<td>(\rho^5 (-16u^5 + 20u^3 - 5u))</td>
<td>(\rho^5 (16u^4 - 12u^2 + 1))</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
</tbody>
</table>

With this notation, \(P(\rho e^{j\theta}) = R(u, \rho) + j\sqrt{1-u^2}T(u, \rho) =: P_c(u, \rho) \) where

\[
R(u, \rho) = a_n c_n(u, \rho) + a_{n-1} c_{n-1}(u, \rho) + \cdots + a_1 c_1(u, \rho) + a_0
\]
\[
T(u, \rho) = a_n s_n(u, \rho) + a_{n-1} s_{n-1}(u, \rho) + \cdots + a_1 s_1(u, \rho).
\]

- \(R(u, \rho) \) and \(T(u, \rho) \) are polynomials in \(u \) and \(\rho \).

- The complex plane image of \(P(z) \) as \(z \) traverses the upper half of the circle \(\mathcal{C}_\rho \) can be obtained by evaluating \(P_c(u, \rho) \) as \(u \) runs from \(-1 \) to \(+1\).
LEMMA

For a fixed \(\rho > 0 \),

(a) if \(P(z) \) has no roots on the circle of radius \(\rho > 0 \),
 \((R(u, \rho), T(u, \rho)) \) have no common roots for \(u \in [-1, 1] \) and \(R(\pm 1, \rho) \neq 0 \).

(b) if \(P(z) \) has \(2m \) roots at \(z = -\rho (z = +\rho) \),
 then \(R(u, \rho) \) and \(T(u, \rho) \) have \(m \) roots each at \(u = +1 \) \((u = -1) \).

(c) if \(P(z) \) has \(2m - 1 \) roots at \(z = -\rho (z = +\rho) \), then \(R(u, \rho) \) and \(T(u, \rho) \)
 have \(m \) and \(m - 1 \) roots, respectively at \(u = +1 \) \((u = -1) \).

(d) if \(P(z) \) has \(q_i \) pairs of complex roots at \(z = -\rho u_i \pm j\rho \sqrt{1 - u_i^2} \), for \(u_i \neq \pm 1 \),
 then \(R(u, \rho) \) and \(T(u, \rho) \) each have \(q_i \) real roots at \(u = u_i \).

- When the circle of interest is the unit circle, that is \(\rho = 1 \),
 we will write \(P_c(u, 1) = P_c(u) \) and also

\[
R(u, 1) =: R(u), \quad T(u, 1) =: T(u).
\]
Interlacing Conditions for Root Clustering and Schur Stability

THEOREM

$P(z)$ has all its zeros strictly within C_ρ if and only if

(a) $R(u, \rho)$ has n real distinct zeros r_i, $i = 1, 2, \cdots, n$ in $(-1, 1)$.

(b) $T(u, \rho)$ has $n - 1$ real distinct zeros t_j, $j = 1, 2, \cdots, n - 1$ in $(-1, 1)$.

(c) The zeros r_i and t_j interlace:

$$-1 < r_1 < t_1 < r_2 < t_2 < \cdots < t_{n-1} < r_n < +1.$$

The three conditions given in the above Theorem may be referred to as interlacing conditions on $R(u, \rho)$ and $T(u, \rho)$. By setting $\rho = 1$ in the above Theorem we obtain conditions for Schur stability in terms of interlacing of the zeros of $R(u)$ and $T(u)$.
Tchebyshev Representation of Rational Functions

Let

\[P_i(z) \big|_{z=-\rho u+j\rho \sqrt{1-u^2}} = R_i(u, \rho) + j\sqrt{1-u^2}T_i(u, \rho), \quad i=1,2. \]

\[Q(z) \big|_{z=-\rho u+j\rho \sqrt{1-u^2}} = \frac{P_1(z)P_2(z^{-1})}{P_2(z)P_2(z^{-1})} \bigg|_{z=-\rho u+j\rho \sqrt{1-u^2}} \]

\[= \frac{R(u, \rho)}{(R_1(u, \rho)R_2(u, \rho) + (1-u^2)T_1(u, \rho)T_2(u, \rho))} \]

\[+ j\sqrt{1-u^2} \frac{(T_1(u, \rho)R_2(u, \rho) - R_1(u, \rho)T_2(u, \rho))}{R_2^2(u, \rho) + (1-u^2)T_2^2(u, \rho)}. \]

\[R(u, \rho), \quad T(u, \rho) \]

are rational functions of the real variable \(u \) which runs from -1 to +1.
ROOT COUNTING FORMULAS

LEMMA
Let the real polynomial $P(z)$ have i roots in the interior of the circle C_{ρ} and no roots on the circle. Then:

$$\Delta_0^\pi [\phi_P(\theta)] = \pi i$$

LEMMA
Let $Q(z) = \frac{P_1(z)}{P_2(z)}$, where the real polynomials $P_1(z)$ and $P_2(z)$ have i_1 and i_2 roots, respectively in the interior of the circle C_{ρ} and no roots on the circle. Then

$$\Delta_0^\pi [\phi_Q(\theta)] = \pi (i_1 - i_2) = \Delta_{-1}^+ [\phi_{Q_C}(u)].$$
• Let \(t_1, \ldots, t_k \) denote the real distinct zeros of \(T(u, \rho) \) of odd multiplicity, for \(u \in (-1, 1) \), ordered as follows:
\(-1 < t_1 < t_2 < \cdots < t_k < +1\). Suppose also that \(T(u, \rho) \) has \(p \) zeros at \(u = -1 \) and let \(f^i(x_0) \) denote the \(i \)-th derivative to \(f(x) \) evaluated at \(x = x_0 \).

THEOREM

Let \(P(z) \) be a real polynomial with no roots on the circle \(C_\rho \) and suppose that \(T(u, \rho) \) has \(p \) zeros at \(u = -1 \). Then the number of roots \(i \) of \(P(z) \) in the interior of the circle \(C_\rho \) is given by

\[
i = \frac{1}{2} Sgn \left[T^{(p)}(-1, \rho) \right] \left(Sgn \left[R(-1, \rho) \right] + 2 \sum_{j=1}^{k} (-1)^j Sgn \left[R(t_j, \rho) \right] + (-1)^{k+1} Sgn \left[R(+1, \rho) \right] \right).
\]
• The result derived above can now be extended to the case of rational functions. Let $Q(z) = \frac{P_1(z)}{P_2(z)}$ where $P_i(z), i = 1, 2$ are real rational functions.

• Tchebyshev representation of $Q(z)$ on the circle C_ρ.

Let $R(u, \rho), T(u, \rho)$ be defined by:

\[
R(u, \rho) = R_1(u, \rho)R_2(u, \rho) + (1 - u^2)T_1(u, \rho)T_2(u, \rho)
\]
\[
T(u, \rho) = T_1(u, \rho)R_2(u, \rho) - R_1(u, \rho)T_2(u, \rho)
\]

• Suppose that $T(u, \rho)$ has p zeros at $u = -1$ and let $t_1 \cdots t_k$ denote the real distinct zeros of $T(u, \rho)$ of odd multiplicity ordered as $-1 < t_1 < t_2 < \cdots < t_k < +1$.

THEOREM

Let $Q(z) = \frac{P_1(z)}{P_2(z)}$ where $P_i(z), i = 1, 2$ are real polynomials with i_1 and i_2 zeros respectively inside the circle C_ρ and no zeros on it. Then

\[
i_1 - i_2 = \frac{1}{2} \text{Sgn} [T^{(p)}(-1, \rho)] \left(\text{Sgn} [R(-1, \rho)] + 2 \sum_{j=1}^{k} (-1)^j \text{Sgn} [R(t_j, \rho)] + (1)^k \text{Sgn} [R(+1, \rho)] \right).
\]
DIGITAL PI, PD AND PID CONTROLLERS

- For PI controllers,

\[
C(z) = K_P + K_I T \cdot \frac{z}{z-1} = \frac{(K_P + K_I T) \left(z - \frac{K_P}{K_I T + K_P} \right)}{z - 1} = \frac{K_1 (z - K_2)}{z - 1}
\]

where \(K_P = K_1 K_2 \), \(K_I = \frac{K_1 - K_1 K_2}{T} \).

- For PD controllers,

\[
C(z) = K_P + \frac{K_D}{T} \cdot \frac{z - 1}{z} = \frac{(K_P + \frac{K_D}{T}) \left(z - \frac{K_D}{K_P + \frac{K_D}{T}} \right)}{z}
\]

\[= \frac{K_1 (z - K_2)}{z}\]

where \(K_P = K_1 - K_1 K_2 \), \(K_D = K_1 K_2 T \).

- The general formula of a discrete PID controller, using backward differences to preserve causality,

\[
C(z) = K_P + K_I T \cdot \frac{z}{z-1} + \frac{K_D}{T} \cdot \frac{z - 1}{z} = \frac{K_2 z^2 + K_1 z + K_0}{z(z - 1)}
\]

where

\[
K_P = -K_1 - 2K_0, \quad K_I = \frac{K_0 + K_1 + K_2}{T}, \quad K_D = K_0 T.
\]
COMPUTATION OF THE STABILIZING SET

Constant Gain Stabilization

- Plant $G(z) = \frac{N(z)}{D(z)}$

- The closed-loop characteristic polynomial is

$$\delta(z) = D(z) + KN(z).$$

- Tchebyshev representations of $D(z)$ and $N(z)$

$$D(e^{j\theta}) = R_D(u) + j\sqrt{1 - u^2}T_D(u)$$
$$N(e^{j\theta}) = R_N(u) + j\sqrt{1 - u^2}T_N(u),$$

- Note also that $N(e^{-j\theta}) = R_D(u) - j\sqrt{1 - u^2}T_D(u)$ and $N(z^{-1}) = \frac{N_r(z)}{z^l}$

where $N_r(z)$ is the reverse polynomial and l is the degree of $N(z)$.
\[\delta(z)N(z^{-1}) = D(z)N(z^{-1}) + KN(z)N(z^{-1}) \]

\[
\frac{\delta(z)N_r(z)}{z^l} \bigg|_{z=e^{j\theta}} = \left(R_D(u) + j\sqrt{1-u^2}T_D(u) \right) \left(R_N(u) - j\sqrt{1-u^2}T_N(u) \right) \\
+ K \left[R_N^2(u) + (1-u^2)T_N^2(u) \right] \\
= R_D(u)R_N(u) + (1-u^2)T_D(u)T_N(u) + K \left[R_N^2(u) + (1-u^2)T_N^2(u) \right] \\
\]

\[
R(K,u) + j\sqrt{1-u^2} \left[T_D(u)R_N(u) - R_D(u)T_N(u) \right] \\
T(u) \\
= R(K,u) + j\sqrt{1-u^2}T(u). \\
\]

- The imaginary part of the above expression has been rendered independent of \(K \) as a result of multiplying \(\delta(z) \) by \(N(z^{-1}) \).

Digital PID Controller Design

Ready to apply the root counting formulas
Digital PID Controller Design

Constant Gain Stabilization Algorithm

- Let $t_i, i = 1, 2, \cdots, k$ denote the real zeros of odd multiplicity of the fixed $T(u)$, for u in $(-1, +1)$ and set $t_0 = -1, t_{k+1} = +1$.
- Write $\text{Sgn} [R(K, t_j)] = x_j, \quad j = 0, 1, \cdots, k + 1$
- Let i_δ, i_{N_r} denote the number of zeros of $\delta(z)$ and $N_r(z)$ inside the unit circle. For simplicity assume that $N(z)$ has no unit circle zeros and therefore neither does $N_r(z)$.

\[
i_\delta + i_{N_r} - l = \frac{1}{2} \text{Sgn} [T^{(p)}(-1)] \\
\cdot \left(\text{Sgn} [R(K, -1)] + 2 \sum_{j=1}^{k} (-1)^j \text{Sgn} [R(K, t_j)] + (-1)^{k+1} \text{Sgn} [R(K, +1)] \right).
\]
Example

\[G(z) = \frac{z^4 + 1.93z^3 + 2.2692z^2 + 0.1443z - 0.7047}{z^5 - 0.2z^4 - 3.005z^3 - 3.9608z^2 - 0.0985z + 1.2311}. \]

- Then
 \[R_D(u) = -16u^5 - 1.6u^4 + 32.02u^3 - 6.3216u^2 - 13.9165u + 4.9919 \]
 \[T_D(u) = 16u^4 + 1.6u^3 - 24.02u^2 + 7.1216u + 3.9065 \]
 \[R_N(u) = 8u^4 - 7.72u^3 - 3.4616u^2 + 5.6457u - 1.9739 \]
 \[T_N(u) = -8u^3 + 7.72u^2 - 0.5384u - 1.7857 \]

- and
 \[T(u) = T_D(u)R_N(u) - R_D(u)T_N(u) \]
 \[= -11.2752u^4 + 7.5669u^3 + 16.7782u^2 - 14.1655u + 1.203. \]

- The roots of \(T(u) \) of odd multiplicity and lying in \((-1, 1)\) are 0.0963 and 0.8358.
Digital PID Controller Design

\[R(K, u) = 11.2752u^5 + 12.1307u^4 - 40.6359u^3 - 7.1779u^2 + 40.8322u \\
\quad - 16.8293 - 19.6615u - 5.4727 \\
\quad + K \left(-11.2752u^4 + 9.7262u^3 + 15.0696u^2 - 20.3653u + 7.085 \right) . \]

- Since \(i_\delta = 5 \) for stability, and \(i_{N_r} = 2 \) and \(l = 4 \), we must have:

\[
\text{Sgn} \left[T^{(p)}(-1) \right] \left(\text{Sgn}[R(K, -1)] - 2\text{Sgn}[R(K, 0.0963)] + 2\text{Sgn}[R(K, 0.8358)] - \text{Sgn}[R(K, 1)] \right) = 6
\]

- Since \(\text{Sgn} \left[T^{(p)}(-1) \right] = +1 \), we have the only feasible string given by:

\[
\begin{array}{ccccc}
\text{Sgn}[R(K,-1)] & \text{Sgn}[R(K, 0.0963)] & \text{Sgn}[R(K, 0.8358)] & \text{Sgn}[R(K, 1)] \\
1 & -1 & 1 & -1
\end{array}
\]
This translates into the following set of inequalities:

\[R(K, -1) = -23.348 + 21.5185K > 0 \Rightarrow K > 1.085 \]
\[R(K, 0.0963) = -12.998 + 5.2709K < 0 \Rightarrow K < 2.466 \]
\[R(K, 0.8358) = -0.9232 + 0.7673K > 0 \Rightarrow K > 1.2032 \]
\[R(K, 1) = -0.4050 + 0.2403K < 0 \Rightarrow K < 1.6854. \]

The closed loop system is stable for \(1.2032 < K < 1.6854 \).

In this example, we have \(x_j, j = 0, 1, 2, 3 \). Each \(x_j \) may assume the value +1 or −1 since 0 is excluded as we are testing for stability. This leads to \(2^4 = 16 \) possible strings which may satisfy the signature requirement. In this example, only one string of the possible 16 satisfies the signature requirement.
Stabilization with PI Controllers

- Plant and Controller: \(P(z) = \frac{N(z)}{D(z)}, \quad C(z) = \frac{K_1(z - K_2)}{z - 1} \)

- The characteristic polynomial: \(\delta(z) = (z - 1)D(z) + K_1(z - K_2)N(z) \)

- Writing the Tchebyshev representations of \(D(z), N(z) \) and \(N(z^{-1}) \)

- Then to achieve parameter separation, we calculate

\[
\delta(z)N(z^{-1}) \mid_{u = -\cos \theta} = \left(-u - 1 + j\sqrt{1-u^2}\right)\left(P_1(u) + j\sqrt{1-u^2}P_2(u)\right) + jK_1\sqrt{1-u^2}P_3(u) - K_1(u + K_2)P_3(u)
\]

where

\[
P_1(u) = R_D(u)R_N(u) + (1 - u^2)T_D(u)T_N(u)
\]

\[
P_2(u) = R_N(u)T_D(u) - T_N(u)R_D(u)
\]

\[
P_3(u) = R_N^2(u) + (1 - u^2)T_N^2(u).
\]
\[
\delta(z) N(z^{-1}) \bigg|_{z=e^{j\theta}, u=-\cos \theta} = \frac{\delta(z) N_r(z)}{z^l} \bigg|_{z=e^{j\theta}, u=-\cos \theta} \\
= R(u, K_1, K_2) + \sqrt{1 - u^2} T(u, K_1)
\]

where
\[
R(u, K_1, K_2) = -(u+1)P_1(u) - (1-u^2)P_2(u) - K_1(u+K_2)P_3(u)
\]
\[
T(u, K_1) = P_1(u) - (u+1)P_2(u) + K_1P_3(u).
\]

- For a fixed value of K_1, we calculate the real distinct zeros t_i of $T(u, K_1)$ of odd multiplicity for $u \in (-1, 1)$: $-1 < t_1 < \cdots < t_k < +1$.

- Let i_δ, i_{N_r} be the number of zeros of $\delta(z)$ and $N_r(z)$ inside the unit circle, respectively, then we have

\[
i_\delta + i_{N_r} - l = \frac{1}{2} \text{Sgn} [T^{(p)}(-1)] \left(\text{Sgn} [R(-1, K_1, K_2)] \\
+ 2 \sum_{j=1}^{k} (-1)^j \text{Sgn} [R(t_j, K_1, K_2)] + (-1)^{k+1} \text{Sgn} [R(+1, K_1, K_2)] \right).
\]
Stabilization with PD Controllers

- Plant and Controller: \(P(\hat{z}) = \frac{N(\hat{z})}{D(\hat{z})} \), \(C(\hat{z}) = \frac{K_1(\hat{z} - K_2)}{\hat{z}} \)

- The characteristic polynomial: \(\delta(\hat{z}) = \hat{z}D(\hat{z}) + K_1(\hat{z} - K_2)N(\hat{z}) \)

- Consider

\[
\delta(\hat{z})N(\hat{z}^{-1})\big|_{\hat{z}=e^{j\theta}, u=\cos \theta} = R(u, K_1, K_2) + j\sqrt{1-u^2}T(u, K_1)
\]

where

\[
R(u, K_1, K_2) = -uP_1(u) - (1-u^2)P_2(u) - K_1(u + K_2)P_3(u)
\]

\[
T(u, K_1) = K_1P_3(u) + P_1(u) - uP_2(u).
\]

- Parameter separation has again been achieved, that is, \(K_1 \) appears only in the imaginary part and for fixed \(K_1 \) the real part is linear in \(K_2 \).

- Thus the application of the root counting formulas will yield linear inequalities in \(K_2 \), for fixed \(K_1 \).
STABILIZATION WITH PID CONTROLLERS

- **PID Controller:**
 \[C(z) = \frac{K_2 z^2 + K_1 z + K_0}{z(z - 1)} \]

- The characteristic polynomial becomes
 \[\delta(z) = z(z - 1)D(z) + (K_2 z^2 + K_1 z + K_0) N(z) \]

- Multiplying the characteristic polynomial by \(z^{-1}N(z^{-1}) \),
 \[z^{-1} \delta(z)N(z^{-1}) = (z - 1)D(z)N(z^{-1}) + (K_2 z + K_1 + K_0 z^{-1}) N(z)N(z^{-1}) \]

- Using the Tchebyshev representations, we have
 \[z^{-1} \delta(z)N(z^{-1}) = -(u + 1)P_1(u) - (1 - u^2) P_2(u) - [(K_0 + K_2) u - K_1] P_3(u) \]
 \[+ j \sqrt{1 - u^2} \left[-(u + 1)P_2(u) + P_1(u) + (K_2 - K_0) P_3(u) \right] \]
 \[= R(u, K_0, K_1, K_2) + j \sqrt{1 - u^2} T(u, K_0, K_2) \]
• Let \(K_3 := K_2 - K_0 \).

• Then \(K_P = -K_1 - 2K_0 \), \(K_I = \frac{K_0+K_1+K_2}{T} \), and \(K_D = K_0T \).

• Hence we rewrite \(R(u, K_0, K_1, K_2) \) and \(T(u, K_0, K_2) \) as follows.

\[
R(u, K_1, K_2, K_3) = -(u + 1)P_1(u) - (1 - u^2) P_2(u) - [(2K_2 - K_3)u - K_1] P_3(u)
\]

\[
T(u, K_3) = P_1(u) - (u + 1)P_2(u) + K_3P_3(u)
\]

• The **parameter separation achieved**: \(K_3 \) appears only in the imaginary part and \(K_1, K_2, K_3 \) appear linearly in the real part.

• Thus by applying root counting formulas to the rational function on the left, and imposing the stability requirement yields **linear** inequalities in the parameters for fixed \(K_3 \).

• The solution is completed by sweeping over the range of \(K_3 \) for which an adequate number of real roots \(t_k \) exist.
Example

- **Plant:** \(G(z) = \frac{1}{z^2 - 0.25} \)

- Then \(R_D(u) = 2u^2 - 1.25, \quad T_D(u) = -2u, \quad R_N(u) = 1, \quad T_N(u) = 0 \)
 \(P_1(u) = 2u^2 - 1.25, \quad P_2(u) = -2u, \quad P_3(u) = 1 \)

- Since \(G(z) \) is of order 2 and \(C(z) \), the PID controller, is of order 2, the number of roots of \(\delta(z) \) inside the unit circle is required to be 4 for stability.

- From Theorem (Root counting for a real polynomial),
 \[i_i - i_2 = \left(i_\delta + i_{N_r} \right) - (l + 1) \]
 where \(i_\delta \) and \(i_{N_r} \) are the numbers of roots of \(\delta(z) \) and the reverse polynomial of \(N(z) \) inside the unit circle, respectively and \(l \) is the degree of \(N(z) \).
Digital PID Controller Design

- Since the required i_δ is 4, $i_{N_r} = 0$, and $l = 0$, $i_1 - i_2$ is required to be 3.
- To illustrate the example in detail, we first fix $K_3 = 1.3$.
- Then the real roots of $T(u, K_3)$ in $(-1, 1)$ are -0.4736 and -0.0264.
- Furthermore, $\text{Sgn}[T(-1)] = 1$, $i_1 - i_2 = 3$ requires that:
 \[\frac{1}{2} \text{Sgn}[T(-1)] \left(\text{Sgn}[R(-1)] - 2\text{Sgn}[R(-0.4736)] + 2\text{Sgn}[R(-0.0264)] - \text{Sgn}[R(1)] \right) = 3 \]
- We have only one valid sequence satisfying the above equation,
 \[
 \begin{array}{cccc}
 \text{Sgn}[R(-1)] & \text{Sgn}[R(-0.4736)] & \text{Sgn}[R(-0.0264)] & \text{Sgn}[R(1)] \\
 1 & -1 & 1 & -1 \\
 \end{array}
 \]
 $2(i_1 - i_2) = 6$
- From this valid sequence, we have the following set of linear inequalities.
 \[
 \begin{align*}
 -1.3 + K_1 + 2K_2 &> 0 \\
 -0.9286 + K_1 + 0.9472 &< 0 \\
 1.1286 + K_1 + 0.0528K_2 &> 0 \\
 -0.2 + K_1 - 2K_2 &< 0.
 \end{align*}
 \]
Digital PID Controller Design

\[
\begin{bmatrix}
K_P \\
K_I \\
K_D
\end{bmatrix}
= \begin{bmatrix}
-2 & -1 & 0 \\
\frac{1}{T} & \frac{1}{T} & \frac{1}{T} \\
T & 0 & 0
\end{bmatrix}
\begin{bmatrix}
K_0 \\
K_1 \\
K_2
\end{bmatrix}
= \begin{bmatrix}
-2 & -1 & 0 \\
\frac{1}{T} & \frac{1}{T} & \frac{1}{T} \\
T & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 1 & -1 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
K_1 \\
K_2 \\
K_3
\end{bmatrix}
\]

Stability regions in \((K_1, K_2, K_3)\) space (left) and \((K_P, K_I, K_D)\) space (right)
Maximally Deadbeat Control

- The design scheme attempts to place the closed loop poles in a circle of minimum radius ρ. Let S_ρ denote the set of PID controllers achieving such a closed loop root cluster.

- We show below how S_ρ can be computed for fixed ρ. The minimum value of ρ can be found by determining the value ρ^* for which $S_{\rho^*} = \emptyset$ but $S_\rho \neq \emptyset, \rho > \rho^*$.

- PID Controller: $\ C(z) = \frac{K_2 z^2 + K_1 z + K_0}{z(z - 1)}$

- The characteristic equation

$$\delta(z) = z(z - 1)D(z) + (K_2 z^2 + K_1 z + K_0) N(z).$$

- Note that

$$D(z)|_{z = -\rho u + j\rho \sqrt{1 - u^2}} = R_D(u, \rho) + j\sqrt{1 - u^2} T_D(u, \rho)$$

$$N(z)|_{z = -\rho u + j\rho \sqrt{1 - u^2}} = R_N(u, \rho) + j\sqrt{1 - u^2} T_N(u, \rho)$$
Digital PID Controller Design

\[N \left(\rho^2 z^{-1} \right) \bigg|_{z=-\rho u+j\rho \sqrt{1-u^2}} = N(z) \bigg|_{z=-\rho u-j\rho \sqrt{1-u^2}} = R_N(u, \rho) - j \sqrt{1-u^2} T_N(u, \rho). \]

- We evaluate

\[\rho^2 z^{-1} \delta(z) N \left(\rho^2 z^{-1} \right) = \rho^2 z^{-1} \left[z(z-1) D(z) + (K_2 z^2 + K_1 z + K_0) N(z) \right] N \left(\rho^2 z^{-1} \right) \]

over the circle \(C_\rho \)

\[\rho^2 z^{-1} \delta(z) N \left(\rho^2 z^{-1} \right) \bigg|_{z=-\rho u+j\rho \sqrt{1-u^2}} = -\rho^2 (\rho u + 1) P_1(u, \rho) - \rho^3 (1-u^2) P_2(u, \rho) - \left[(K_0 + K_2 \rho^2) \rho u - K_1 \rho^2 \right] P_3(u, \rho) + j \sqrt{1-u^2} \left[\rho^3 P_1(u, \rho) - \rho^2 (\rho u + 1) P_2(u, \rho) + (K_2 \rho^2 - K_0) \rho P_3(u, \rho) \right] \]

where

\[P_1(u, \rho) = R_D(u, \rho) R_N(u, \rho) + (1-u^2) T_D(u, \rho) T_N(u, \rho) \]
\[P_2(u, \rho) = R_N(u, \rho) T_D(u, \rho) - T_N(u, \rho) R_D(u, \rho) \]
\[P_3(u, \rho) = R_N^2(u, \rho) + (1-u^2) T_N^2(u, \rho). \]
• By letting \(K_3 := K_2 \rho^2 - K_0 \),

• we have

\[
\rho^2 z^{-1} \delta(z) N (\rho^2 z^{-1}) \bigg|_{z = -\rho u + j \rho \sqrt{1 - u^2}} = -\rho^2 (\rho u + 1) P_1(u, \rho) - \rho^3 (1 - u^2) P_2(u, \rho) - \left[(2K_2 \rho^2 - K_3) \rho u - K_1 \rho^2 \right] P_3(u, \rho) + j \sqrt{1 - u^2} \left[\rho^3 P_1(u, \rho) - \rho^2 (\rho u + 1) P_2(u, \rho) + K_3 \rho P_3(u, \rho) \right].
\]

• Fix \(K_3 \), use the root counting formulas, develop linear inequalities in \(K_2, K_3 \) and sweep over the requisite range of \(K_3 \). This procedure is then performed as \(\rho \) decreases until the set of stabilizing PID parameters just disappears.
Example

- We consider the same plant used in the previous example.
- Left figure shows the stabilizing set in the PID gain space at $\rho = 0.275$.
Digital PID Controller Design

- For a smaller value of \(\rho \), the stabilizing region in PID parameter space disappears. This means that there is no PID controller available to push all closed loop poles inside a circle of radius smaller than 0.275.

- From this we select a point inside the region that is

\[
K_0 = 0.0048, \quad K_1 = -0.3195, \quad K_2 = 0.6390, \quad K_3 = 0.0435.
\]

- From the relationship between parameters, we have

\[
\begin{bmatrix}
 K_P \\
 K_I \\
 K_D
\end{bmatrix}
= \begin{bmatrix}
 -1 & -2\rho^2 & 2 \\
 \frac{1}{T} & \frac{\rho^2}{T} + \frac{1}{T} & -\frac{1}{T} \\
 0 & \frac{\rho^2 T}{T} & -\frac{T}{T}
\end{bmatrix}
\begin{bmatrix}
 K1 \\
 K2 \\
 K3
\end{bmatrix}
= \begin{bmatrix}
 0.3099 \\
 0.3243 \\
 0.0048
\end{bmatrix}
\]

- Right figure shows the closed loop poles that lie inside the circle of radius \(\rho = 0.275 \). The roots are:

\[
0.2500 \pm j0.1118 \quad \text{and} \quad 0.2500 \pm j0.0387.
\]
- We select several sets of stabilizing PID parameters from the set obtained in the previous example (i.e., $\rho = 1$) and compare the step responses between them.
Maximum Delay Tolerance Design

- Finding the maximum values of L^* such that the stabilizing PID gain set that simultaneously stabilizes the set of plants

$$z^{-L}G(z) = \frac{N(z)}{z^L D(z)}, \quad \text{for } L = 0, 1, \cdots, L^*$$

- Let S_i be the set of PID gains that stabilizes the plant $z^{-i}G(z)$. Then $\bigcap_{i=0}^{L} S_i$ stabilizes $z^i G(z)$ for all $i = 0, 1, \cdots, L$.
The right figure shows the stabilizing PID gains when $L = 0, 1$. As seen in the figure, the size of the set is reduced as the delay increases.
Digital PID Controller Design

- In many systems, the set disappears for a large value of L^*. This is the maximum delay that can be stabilized by any PID controllers.